111,212 research outputs found

    Braiding simulation for RTM preforms

    Get PDF
    Braiding is a manufacturing process that is increasingly being used to manufacture pre-forms for Resin Transfer Moulding. A fast simulation method is presented for the prediction of the fibre distribution on complex braided parts and complex kinetic situations (e.g. changes in velocity, orientation). The implementation is suited for triangular surface representations as generated by many CAD software packages in use. Experimental results are presented to validate the model predictions, showing an acceptable correlation with the data predicted by the simulation method. The guide ring dimensions and spacing appear to have a significant effect on the accuracy of the predicted fibre orientations

    Calculation of nuclear matrix elements in neutrinoless double electron capture

    Full text link
    We compute nuclear matrix elements for neutrinoless double electron capture on 152^{152}Gd, 164^{164}Er and 180^{180}W nuclei. Recent precise mass measurements for these nuclei have shown a large resonance enhancement factor that makes them the most promising candidates for observing this decay mode. We use an advanced energy density functional method which includes beyond mean-field effects such as symmetry restoration and shape mixing. Our calculations reproduce experimental charge radii and B(E2)B(E2) values predicting a large deformation for all these nuclei. This fact reduces significantly the values of the NMEs leading to half-lives larger than 102910^{29} years for the three candidates
    corecore