25 research outputs found

    Avanços nas pesquisas etnobotânicas no Brasil

    Full text link

    Thermally induced chemical evolution in polyimide films investigated by X ray photoelectron spectroscopy

    Get PDF
    Thermally modified polyimide films based on 1,4-Phenylene diamine (p-PDA) and 3,3,4,4 - Benzophenone tetracarboxylic dianhydride (BTDA) were prepared and their chemical structure transformation after thermal treatment at 350 degrees C-500 degrees C was investigated. X-ray diffraction results revealed an increase in the polymer chain order for all treated PI samples as a consequence of the thermal treatment and chain interaction. TGA analysis showed that the heat treatment promoted different thermal degradation profiles. Electron spin resonance evidenced a large population of free radicals as a result of homogeneous bond cleavage when the thermal treatment was performed at 500 degrees C. X-ray photoelectron spectroscopy analysis indicated that the chemical structure transformation not only occurs on the outer surface but also in the sub-surface layer. These results show that controlled fast thermal treatment can produce materials with specific characteristics and may serve as a general strategy for changing both structural and chemical properties of the polymers. POLYM. ENG. SCI., 58:943-951, 2018. (c) 2017 Society of Plastics Engineer

    Improvement On Direct Ethanol Fuel Cell Performance By Using Doped-nafion® 117 Membranes With Pt And Pt-ru Nanoparticles

    No full text
    Nafion® 117 membranes doped with Pt (4 × 10 -4 mol L-1 or 8 × 10-4 mol L-1 H2PtCl6 solution), and with Pt-Ru (4 × 10 -4 mol L-1 H2PtCl6 and 2 × 10-4 mol L-1 RuCl3 solutions) nanoparticles have been synthesized using a simple and scalable absorption-reduction method. The chemical integrity of the membranes was confirmed by 13C and 19F solid-state NMR. The pore microstructure of the membranes was preserved after the doping process, according to SAXS measurements. The tests of the direct ethanol fuel cells (DEFC) performance at 90 C exhibited up to 38% and 56% increase at the maximum power densities for Pt doped-Nafion ® membrane from lower and higher concentration of H 2PtCl6 solution, respectively, compared to bare Nafion® membranes. Additionally, a Pt-Ru doped-membrane tested at 110 C exhibited the highest power density. Such superior performances may be attributed to a synergistic effect between the extra amount of active catalytic sites inside the pore structure for the electrochemical oxidation of ethanol, thus preventing ethanol crossover, and the excellent proton migration properties conferred by the pore microstructure of Nafion®. These results demonstrate that the doped-Nafion® membrane has a good capacity to improve the performance of DEFC, and provided further clarification on the synthesis process of polymer electrolyte doped-membranes in fuel cell technology. © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights.38271206012068Hotza, D., Diniz Da Costa, J., Fuel cells development and hydrogen production from renewable resources in Brazil (2008) International Journal of Hydrogen Energy, 33, pp. 4915-4935Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research (2011) Applied Energy, 88, pp. 981-1007Sharma, S., Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts - A review (2012) Journal of Power Sources, 208, pp. 96-119Silva, R.A., Hashimoto, T., Thompson, G.E., Rangel, C.M., Characterization of MEA degradation for an open air cathode PEM fuel cell (2012) International Journal of Hydrogen Energy, 37, pp. 7299-7308Wu, J., Yuan, X.Z., Wang, H., Blanco, M., Martin, J.J., Zhang, J., Diagnostic tools in PEM fuel cell research: Part i electrochemical techniques (2008) International Journal of Hydrogen Energy, 33, pp. 1735-1746Cheng, X., Zhang, J., Tang, Y., Song, C., Shen, J., Song, D., Hydrogen crossover in high-temperature PEM fuel cells (2007) Journal of Power Sources, 167, pp. 25-31Neburchilov, V., Martin, J., Wang, H., Zhang, J., A review of polymer electrolyte membranes for direct methanol fuel cells (2007) Journal of Power Sources, 169, pp. 221-238Song, S., Zhou, W., Tian, J., Cai, R., Sun, G., Xin, Q., Ethanol crossover phenomena and its influence on the performance of DEFC (2005) J Power Sources, 145, pp. 266-271Vilekar, S.A., Datta, R., The effect of hydrogen crossover on open-circuit voltage in polymer electrolyte membrane fuel cells (2010) J Power Sources, 195, pp. 2241-2247Paganin, V., Sitta, E., Iwasita, T., Vielstich, W., Methanol crossover effect on the cathode potential of a direct PEM fuel cell (2005) Journal of Applied Electrochemistry, 35, pp. 1239-1243Zhang, J., Tang, Y., Song, C., Wang, H., PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 C to 120 C (2006) Journal of Power Sources, 163, pp. 532-537Liu, J., Zhao, T., Liang, Z., Chen, R., Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells (2006) Journal of Power Sources, 153, pp. 61-67Andreadis, G., Tsiakaras, P., Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation (2006) Chemical Engineering Science, 61, pp. 7497-7508Devrim, Y., Erkan, S., Baç, N., Eroglu, I., Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique (2012) International Journal of Hydrogen Energy, 37, pp. 16748-16758Tricoli, V., Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations (1998) Journal of the Electrochemical Society, 145, pp. 3798-3801Antonucci, P.L., Aricò, A.S., Cretì, P., Ramunni, E., Antonucci, V., Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation (1999) Solid State Ionics, 125, pp. 431-437Aricò, A.S., Creti, P., Antonucci, P.L., Antonucci, V., Comparison of ethanol and methanol oxidation in a liquid-feed solid polymer electrolyte fuel cell at high temperature (1998) Electrochemical and Solid-State Letters, 1, pp. 66-68Pan, M., Tang, H., Liu, Z., Fabrication and performance of polymer electrolyte fuel cells by self-assembly of Pt nanoparticles (2005) Journal of the Electrochemical Society, 152, p. 1081Liang, Z., Zhao, T., New DMFC anode structure consisting of platinum nanowires deposited into a Nafion membrane (2007) The Journal of Physical Chemistry C, 111, pp. 8128-8134Jiang, S.P., Liu, Z., Tang, H.L., Pan, M., Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells (2006) Electrochimica Acta, 51, pp. 5721-5730Jung, E.H., Jung, U.H., Yang, T.H., Peak, D.H., Jung, D.H., Kim, S.H., Methanol crossover through PtRu/Nafion composite membrane for a direct methanol fuel cell (2007) International Journal of Hydrogen Energy, 32, pp. 903-907Shichun, M., Xiaoen, W., Haolin, T., Peigang, L., Ming, L., Mu, P., A self-humidifying composite membrane with self-assembled Pt nanoparticles for polymer electrolyte membrane fuel cells (2006) Journal of the Electrochemical Society, 153, p. 1868Watanabe, M., Uchida, H., Seki, Y., Emori, M., Stonehart, P., Self-humidifying polymer electrolyte membranes for fuel cells (1996) Journal of the Electrochemical Society, 143, pp. 3847-3852White, J.L., Beck, L.W., Ferguson, D.B., Haw, J.F., Background suppression in MAS NMR (1969) Journal of Magnetic Resonance, 1992 (100), pp. 336-341Kellermann, G., Vicentin, F., Tamura, E., Rocha, M., Tolentino, H., Barbosa, A., The small-angle X-ray scattering beamline of the Brazilian Synchrotron Light Laboratory (1997) Journal of Applied Crystallography, 30, pp. 880-883Cavalcanti, L., Torriani, I., Plivelic, T., Oliveira, C., Kellermann, G., Neuenschwander, R., Two new sealed sample cells for small angle x-ray scattering from macromolecules in solution and complex fluids using synchrotron radiation (2004) Review of Scientific Instruments, 75, pp. 4541-4546Hammersley, A., FIT2D V12. 012 Reference ManualSeries (2004) FIT2D V12. 012 Reference Manual, , http://www.%20esrf.%20eu/computing/scientific/FIT2DPaganin, V., Freire, T., Ticianelli, E., Gonzalez, E., A test station facility for research and development on fuel cell components and materials (1997) Review of Scientific Instruments, 68, pp. 3540-3543Spieker, W., Liu, J., Miller, J., Kropf, A., Regalbuto, J., An EXAFS study of the co-ordination chemistry of hydrogen hexachloroplatinate (IV): 1. Speciation in aqueous solution (2002) Applied Catalysis A: General, 232, pp. 219-235Spieker, W., Liu, J., Hao, X., Miller, J., Kropf, A., Regalbuto, J., An EXAFS study of the coordination chemistry of hydrogen hexachloroplatinate (IV): 2. Speciation of complexes adsorbed onto alumina (2003) Applied Catalysis A: General, 243, pp. 53-66Strathmann, H., (2004) Ion-exchange Membrane Separation Processes, , 1st ed. Elsevier Science BostonShen, M., Roy, S., Scott, K., Preparation and characterisation of Pt deposition on ion conducting membrane for direct methanol fuel cell electrodes (2005) Journal of Applied Electrochemistry, 35, pp. 1103-1109Rard, J.A., Chemistry and thermodynamics of ruthenium and some of its inorganic compounds and aqueous species (1985) Chemical Reviews, 85, pp. 1-39Chen, Q., Schmidt-Rohr, K., 19F and 13C NMR signal assignment and analysis in a perfluorinated ionomer (Nafion) by two-dimensional solid-state NMR (2004) Macromolecules, 37, pp. 5995-6003Rubatat, L., Rollet, A.L., Gebel, G., Diat, O., Evidence of elongated polymeric aggregates in Nafion (2002) Macromolecules, 35, pp. 4050-4055Li, B., Qiao, J., Yang, D., Zheng, J., Ma, J., Zhang, J., Synthesis of a highly active carbon-supported Ir-V/C catalyst for the hydrogen oxidation reaction in PEMFC (2009) Electrochimica Acta, 54, pp. 5614-5620Jalani, N.H., Dunn, K., Datta, R., Synthesis and characterization of Nafion®/MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells (2005) Electrochimica Acta, 51, pp. 553-560Colmati, F., Antolini, E., Gonzalez, E.R., Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts (2006) J Power Sources, 157, pp. 98-103Mauritz, K.A., Moore, R.B., State of understanding of Nafion (2004) Chemical Reviews, 104, pp. 4535-458

    Spectroscopic And Electrochemical Study Of [ru(nh3)5oh2]3+, [ru(nh3)5cl]2+, And [os(nh3)5oh2]3+ Immobilized On Thin Film Of Ti(iv) Oxide Dispersed On The Silica Gel Surface

    No full text
    [Ru(NH3)5H2O]3+, [Ru(NH3)5Cl]2+ and [Os(NH3)5H2O]3+ were supported on the hydrated titanium alkoxide grafted on silica gel surface. The mononuclear complexes on the matrix surface have been characterized by specific surface area, elemental analysis, UV-Vis spectroscopy and electrochemical techniques (cyclic voltammetry, differential pulse polarography). These supported species exhibit one defined band on the visible region of the electronic spectrum: band [Ru(NH3)5H2O]3+ (668 nm), [Ru(NH3)5 Cl]2+ (676 nm) and [Os(NH3)5H2O]3+ (825 nm), attributed to MIII → TiIV (M = Ru(III) and Os(III)) metal to metal charge transfer process. For the mononuclear anchored species [Ru(NH3)5H2O]3+, [Ru(NH3)5Cl]2+ and [Os(NH3)5H2O]3+, the (E1/2) for the M(III)/M(II) couple at 25°C are, respectively: -0.22, -0.28, and - 1.15 V versus SCE. A formation of an oxo bridge Ti-O-M(NH3)5 (M = Ru, Os) and chloro bridge Ti-Cl-Ru(NH3)5 was postulated for the grafted complexes on the SiO2/TiO2 surface. © 2000 Elsevier Science B.V.1922-2322772282Siperko, L.M., Kuwana, T., (1983) Electrochim. Acta, 130, p. 765Gushikem, Y., Peixoto, C.R.M., Rodrigues-Filho, U.P., Kubota, L.T., Stadler, E., (1996) J. Colloid Interface Sci., 184, p. 236Denofre, S., Gushikem, Y., Castro, S.C., Kawano, Y., (1993) J. Chem. Soc., Faraday Trans., 89, p. 1057Hoffmann, M.T., Neiva, S.M.C., Martins, M.R., Franco, D.W., (1992), p. 257. , H.A. Mottola, J.R. Steinmezt (Eds.), Chemically Modified Surfaces, Elsevier, New YorkNeiva, S.M.C., Santos, J.A.V., Moreira, J.C., Gushikem, Y., Vargas, H., Franco, D.W., (1995) Langmuir, 9, p. 239Lorencetti, L., Gushikem, Y., Kubota, L.T., Neto, G.O., Fernandes, J.R., (1995) Mikrochim. Acta, 117, p. 239Kubota, L.T., Gouvea, F., Andrade, A.N., Milagres, B.G., Neto, G.O., (1996) Electrochim. Acta, 41, p. 1465Rebenstorf, B., Andersson, S.L.T., (1990) J. Chem. Soc., Faraday Trans., 86, p. 2783Kubota, L.T., Milagres, B.G., Gouvea, F., Neto, G.O., (1996) Anal. Lett., 29, p. 893Walcarius, A., (1998) Electroanalysis, 10, p. 1217Kubota, L.T., Gushikem, Y., (1992) Electochim. Acta, 37, p. 2477Carmo, D.R., Gushikem, Y., Franco, D.W., (1999), p. 325. , J.P. Blitz, C.B. Little (Eds.), Fundamental and Applied Aspects of Chemically Modified Surfaces, The Royal Society of Chemistry, CambridgeFord, P.C., (1970) Coord. Chem. Rev., 5, p. 75Taube, H., (1979) Pure Appl. Chem., 51, p. 901Stritar, J.A., Taube, H., (1969) Inorg. Chem., 8, p. 2281Taube, H., (1981) Comm. Inorg. Chem., 1, p. 17Forlano, P., Baraldo, L.M., Olabe, J.A., Della Védora, C.O., (1994) Inorg. Chim. Acta, 223, p. 37Bezerra, C.W.B., Silva, S.C., Gambardella, M.T.P., Santos, R.H.A., Plicas, L.M.A., Tfouni, E., Franco, D.W., (1999) Inorg. Chem., 38, p. 5660Wilkins, R.G., (1991) Kinetics and Mechanism of reactions of Transition Metal Chemistry, second ed., p. 183. , Wenhein, New YorkEllis, I.D., Sykes, G., (1973) J. Chem. Soc., Dalton Trans., p. 573Kubota, L.T., (1993), Ph.D. Dissertation, Unicamp, BrazilShriver, D.F., (1969) Manipulation of Air Sensitive Compounds, , Mc-Graw-Hill, New YorkDixon, N.E., Lawrance, G.A., Lay, P.A., Sargeson, A.M., (1984) Inorg. Chem., 23, p. 2940Meyer, T., Taube, H., (1968) Inorg. Chem., 7, p. 2369Lay, P.A., Mangunson, R.H., Sen, J., Taube, H., (1982) J. Am. Chem. Soc., 104, p. 7658Kalcher, K., Kauffmann, J.M., Wang, J., Svancara, I., Vytras, K., Neuhold, Z., Zang, Z.C., (1995) Electroanalysis, 7, p. 5Kormann, C., Bahnemann, D.W., Hoffmann, M.R., (1991) Environ. Sci. Technol., 25, p. 494Kondo, M.M., (1996), Ph.D. Dissertation, Delaware University, USACheng, S.F., Tsai, S.-J., Lee, Y.F., (1995) Catal. Today, 26, p. 87Adegite, A., Iyun, J.F., Ojo, J.F., (1977) J. Chem. Soc., Dalton Trans., 2, p. 115Allen, A.D., Stevens, J.R., (1972) Can. J. Chem., 51, p. 92Krentizen, H., (1976), Ph.D. Dissertation, Stanford University, USABhur, J.D., (1978), Ph.D. Dissertation, Stanford University, USATaube, H., (1976) Surv. Prog. Chem., 6, p. 31Endicott, J.F., Taube, H., (1989) Inorg. Chem., 4, p. 437Endicott, J.F., Taube, H., (1962) J. Am Chem. Soc., 84, p. 4984Kubota, L.T., Gushikem, Y., Perez, J., Tanaka, A., (1995) Langmuir, 11, p. 1009Kubota, L.T., Gushikem, Y., (1993) J. Electroanal. Chem., 362, p. 219Lim, H.S., Baclay, D.J., Anson, F., (1972) Inorg. Chem., 11, p. 1460Coleman, G.M., Gesler, J.W., Shirley, F.A., Kuemptel, J.R., (1973) Inorg. Chem., 12, p. 1036Shi, C., Anson, F., (1997) Inorg. Chem., 36, p. 263

    Electrochemical Properties Of [ru(edta)(h2o)]- Immobilized On A Zirconium (iv) Oxide-coated Silica Gel Surface

    No full text
    [Ru(edta)(H2O)]- is strongly adsorbed on a zirconium(IV) oxide-coated silica gel surface. The immobilized complex showed an electrochemical response due to the Ru(II)/Ru(III) redox couple. By substituting the coordinated water molecule in the adsorbed complex, the midpoint potentials shifted in the order (in mV) water, -290; thiocyanate, -200; pyridine, -180; 4-cyanopyridine, -80: and pyrazine, -50 vs SCE.1841236240Steiger, B., Anson, F.C., (1994) Inorg. Chem., 33, p. 5767Abruna, H.D., (1988) Coord. Chem. Rev., 86, p. 135Barisci, J.N., Wallace, G.G., (1991) Anal. Lett., 24, p. 2059Cassidy, J.F., Vos, J.G., (1988) J. Electrochem. Soc., 135, p. 863Zaldivar, G.A.P., Gushikem, Y., (1992) J. Electroanal. Chem., 337, p. 165Kubota, L.T., Gushikem, Y., (1993) J. Electroanal. Chem., 362, p. 219Zaldivar, G.A.P., Gushikem, Y., Benvenutti, E.V., De Castro, S.C., Vasquez, A., (1994) Electrochim. Acta, 39, p. 33Da Cunha, L.J.V., Andreotti, E.I.S., Gushikem, Y., (1995) J. Braz. Chem. Soc., 6, p. 271Peixoto, C.R.M., Kubota, L.T., Gushikem, Y., (1995) Anal. Proc., 32, p. 503Kubota, L.T., Gushikem, Y., Perez, J., Tanaka, A.A., (1995) Langmuir, 11, p. 1009Milagres, B.G., Kubota, L.T., De Oliveira Neto, G., (1996) Electroanalysis, 8, p. 689Shimizu, K., Matsubara, T., Satô, G.P., (1974) Bull. Chem. Soc. Jpn., 47, p. 1651Bajaj, H.C., Van Eldik, R., (1988) Inorg. Chem., 27, p. 4052Matsubara, T., Creutz, C., (1979) Inorg. Chem., 18, p. 1956Matsubara, T., Creutz, C., (1978) J. Am. Chem. Soc., 100, p. 6255Araki, K., Rein, F.N., Camera, S.G., Toma, H.E., (1992) Trans. Met. Chem., 17, p. 535Bajaj, H.C., Van Eldik, R., (1990) Inorg. Chem., 29, p. 2855Oyama, N., Anson, F.C., (1978) J. Electroanal Chem., 88, p. 289Oyama, N., Anson, F.C., (1979) J. Am. Chem. Soc., 101, p. 1634Mukaida, M., Okuno, H., Ishimori, T., (1965) Nippon Kagaku Zasshi, 86, p. 589Perez, J., Tanaka, A.A., Gonzalez, E.R., Ticianelli, E.A., (1994) J. Electrochem. Soc., 141, p. 431Gushikem, Y., Iamamoto, M.S., (1990) J. Colloid Interface Sci., 134, p. 275Veselý, V., Pekárek, V., (1972) Talanta, 19, p. 219Chatterjee, D., Bajaj, H.C., Das, A., (1995) J. Chem. Soc. Dalton Trans., p. 2497Bard, A.J., Faulkner, L.R., (1980) Electrochemical Methods, Fundamentals and Applications, , Wiley, New YorkShigehara, K., Oyama, N., Anson, F.C., (1982) J. Am. Chem. Soc., 103, p. 2552Kubota, L.T., Gushikem, Y., (1993) J. Electroanal. Chem., 362, p. 219Toma, H.E., Creutz, C., (1977) Inorg. Chem., 16, p. 545Shepherd, R.E., Taube, H.E., (1973) Inorg. Chem., 12, p. 139

    Xps Analysis Of Electronic Density Of Iron Tetraazamacrocycle Through Fe 2p Binding Energies On The 3-imidazolilpropyl-modified Surface Of Oxidized N-si(100)

    No full text
    This paper describes the preparation of metallo-organic thin films of [FeTIM(CH3CN)2]2+ complex, where TIM stands for 2,3,9,10-tetramethyl-1,4,8,11-traazacyclotetradeca-1,3,8,10-tetraene on oxidized silicon wafer, SiO2/Si, previously treated with 3-imidazolilpropyltrimethoxysilane, 3-IPTS. X-ray photoemission lines of Fe 2p were used to probe the iron chemical environment in the physically and chemically adsorbed macrocycle complexes. As FeTIM can bind CO, NO or N-heterocyele, a built-on Si wafer sensor device could be envisaged for these molecules. Copyright © 2004 John Wiley & Sons, Ltd.36812141217Mirkhalaf, F., Whittaker, D., Schiffrin, D.J., (1998) J. Electroanal. Chem., 452, p. 203Cao, C., Fadeev, A.Y., McCarthy, T.J., (2001) Langmuir, 17, p. 757Magalhães, J.L., Moreira, L.M., Rodrigues-Filho, U.P., Giz, M.J., Pereira-Da-Silva, M.A., Landers, R., Vinhas, R.C.G., Nascente, P.A.P., (2002) Surf. Interface Anal., 33, p. 293Baldwin, D.A., Pfeifer, R.M., Reichgot, D.W., Rose, N.J., (1993) J. Am. Chem. Soc., 95, p. 5152Hamilton, D.E., Lewis, T.J., Kildahl, N.K., (1979) Inorg. Chem., 12, p. 3364Moreira, J.C., Gushikem, Y.J., (1990) Colloid Interface. Sci, 107, p. 70Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., (1992) Handbook of X-ray Photoelectron Spectroscopy, , Perkin-Elmer: Eden Prairie, MNLeclercq, G., Pireaux, J.-J., (1995) J. Electron Spectrosc. Relat. Phenom., 71, p. 141Horr, T.J., Arora, P.S., (1997) Coll. Surf. A: Physicochem. Eng. Asp., 126, p. 113Méndez, A., Bosch, E., Rosés, M., Neue, V.D., (2003) J. Chromatogr. A, 986, p. 33Kovacs, D., Shepherd, R.E., (1979) J. Inorg. Biochem., 10, p. 67Joly, W.L., (1984) Modern Inorganic Chemistry, p. 171. , McGraw-Hill: SingaporePankratov, A.N., Uchaeva, I.M., Doronin, S.Yu., Chernova, R.K., (2001) J. Struct. Chem., 42, p. 739Maksic, Z.B., Vianello, R., (2002) J. Phys. Chem., 106, p. 419Kabir, S., Sapse, A.-M., (1991) J. Comput. Chem., 12, p. 114
    corecore