5,827 research outputs found

    On the κ\kappa-Dirac Oscillator revisited

    Get PDF
    This Letter is based on the κ\kappa-Dirac equation, derived from the κ\kappa-Poincar\'{e}-Hopf algebra. It is shown that the κ\kappa-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, p→p−imωβr\mathbf{p}\to\mathbf{p}-im\omega\beta\mathbf{r}, in the κ\kappa-Dirac equation, one obtains the κ\kappa-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε=0\varepsilon=0, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.Comment: 5 pages, no figures, accepted for publication in Physics Letters

    A QCD sum rules calculation of the J/ψDs∗DsJ/\psi D_s^* D_s strong coupling constant

    Full text link
    In this work, we calculate the form factors and the coupling constant of the strange-charmed vertex J/ψDs∗DsJ/\psi D_s^* D_s in the framework of the QCD sum rules by studying their three-point correlation functions. All the possible off-shell cases are considered, DsD_s, Ds∗D_s^* and J/ψJ/\psi, resulting in three different form factors. These form factors are extrapolated to the pole of their respective off-shell mesons, giving the same coupling constant for the process. Our final result for the J/ψDs∗DsJ/\psi D_s^* D_s coupling constant is gJ/ψDs∗Ds=4.30−0.37+0.42GeV−1g_{J/\psi D^*_s D_s} = 4.30^{+0.42}_{-0.37}\text{GeV}^{-1}.Comment: 17 pages, 4 figure
    • …
    corecore