25 research outputs found

    The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3, the capsid polypeptides of infectious bursal disease virus

    Get PDF
    AbstractThe interaction between the infectious bursal disease virus (IBDV) capsid proteins VP2 and VP3 has been analyzed in vivo using baculovirus expression vectors. Data presented here demonstrate that the 71-amino acid C-terminal-specific domain of pVP2, the VP2 precursor, is essential for the establishment of the VP2–VP3 interaction. Additionally, we show that coexpression of the pVP2 and VP3 polypeptides from independent genes results in the assembly of virus-like particles (VLPs). This observation demonstrates that these two polypeptides contain the minimal information required for capsid assembly, and that this process does not require the presence of the precursor polyprotein

    Overview of recent TJ-II stellarator results

    No full text
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presented.ISSN:0029-5515ISSN:1741-432

    Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium

    No full text

    Transverse momentum spectra of charged particles in proton–proton collisions at √s=900 GeV with ALICE at the LHC

    No full text
    The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET

    Rapidity and transverse momentum dependence of inclusive J/ψ production in pp collisions at √s=7 TeV

    No full text
    The ALICE experiment at the LHC has studied inclusive J/ψ production at central and forward rapidities in pp collisions at √s=7 TeV. In this Letter, we report on the first results obtained detecting the J/ψ through the dilepton decay into e+e− and ÎŒ+Ό− pairs in the rapidity ranges |y|<0.9 and 2.5<y<4, respectively, and with acceptance down to zero pT. In the dielectron channel the analysis was carried out on a data sample corresponding to an integrated luminosity Lint=5.6 nb−1 and the number of signal events is NJ/ψ=352±32(stat.)±28(syst.); the corresponding figures in the dimuon channel are Lint=15.6 nb−1 and NJ/ψ=1924±77(stat.)±144(syst.). The measured production cross sections are σJ/ψ(|y|<0.9)=10.7±1.0(stat.)±1.6(syst.)−2.3+1.6(syst.pol.)ÎŒb and σJ/ψ(2.5<y<4)=6.31±0.25(stat.)±0.76(syst.)−1.96+0.95(syst.pol.)ÎŒb. The differential cross sections, in transverse momentum and rapidity, of the J/ψ were also measured

    Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    Inclusive transverse momentum spectra of primary charged particles in Pb–Pb collisions at √sNN=2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0–5% and 70–80% of the hadronic Pb–Pb cross section. The measured charged particle spectra in |η|<0.8 and 0.3<pT<20 GeV/c are compared to the expectation in pp collisions at the same sNN, scaled by the number of underlying nucleon–nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAA. The result indicates only weak medium effects (RAA≈0.7) in peripheral collisions. In central collisions, RAA reaches a minimum of about 0.14 at pT=6–7 GeV/c and increases significantly at larger pT. The measured suppression of high-pT particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb–Pb collisions at the LHC

    Two-pion Bose–Einstein correlations in central Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    The first measurement of two-pion Bose–Einstein correlations in central Pb–Pb collisions at √sNN=2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC
    corecore