69 research outputs found

    Efeitos de resíduos orgânicos no solo na germinação de esclerócios, no crescimento micelial e na ocorrência de doenças induzidas por Sclerotium rolfsii

    Get PDF
    The addition of organic residues to soil is an option to control some soil-borne diseases. Benzaldehyde and powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine-bark (Pinus elliottii and P. taeda) added to soil could reduce certain soil-borne diseases. This study evaluated the effects of benzaldehyde and the dried powders of kudzu, velvetbean, and pine-bark as soil amendments on germination and formation of sclerotia, on mycelial growth of Sclerotium rolfsii, on plant survival, and disease incidence. The data showed that high amounts of benzaldehyde (0.4 ml kg-1 of soil) and velvetbean (100 g kg-1) inhibited S. rolfsii mycelial growth and sclerotium germination. However, low amounts of benzaldehyde (0.1 ml kg-1), kudzu (25 g kg-1), and pine-bark (25 g kg-1) stimulated mycelial growth and sclerotium germination. Kudzu (25-100 g kg-1) and velvetbean (25-100 g kg-1) inhibited the formation of sclerotia. Nevertheless, benzaldehyde at 0.2 and 0.4 ml kg-1 stimulated the formation of sclerotia. Kudzu (50 and 100 g kg-1) and pine-bark (50 g kg-1) favored the colonization of sclerotia by Trichoderma sp. The numbers of soybean (Glycine max) plants were higher and diseased plants were lower than the non-amend soil in the following treatments: kudzu (50 and 100 g kg-1), velvetbean (50 and 100 g kg-1), and pine-bark (50 g kg-1). Disease severity on tomato (Lycopersicon esculentum) plants was low in soil treated with kudzu or velvetbean (30 and 35 g kg-1) and pine-bark (35 g kg-1). Dried powders of kudzu, velvetbean, or pine-bark added to soil can reduce disease by reducing pathogen inoculum.A adição ao solo de resíduos orgânicos é uma opção para o manejo de doenças causadas por patógenos de solo. Benzaldeido e resíduos moídos de puerária (Pueraria lobata), mucuna (Mucuna deeringiana) e casca de Pinus (Pinus elliottii e P. taeda) podem reduzir certas doenças propagadas pelo solo. Este estudo avaliou os efeitos do benzaldeido e de pós-secos de puerária, mucuna e casca de Pinus sp. como resíduos de solo na germinação e formação de esclerócios, no crescimento micelial de Sclerotium rolfsii, na sobrevivência de plantas, na incidência de doença e na atividade enzimática do solo. Concentrações mais altas de benzaldeido (0,4 ml kg-1 de solo) e mucuna (100 g kg-1) inibiram o crescimento micelial e a germinação de esclerócios. Todavia, concentrações mais baixas de benzaldeido (0,1 g kg-1), puerária (25 g kg-1), e casca de Pinus sp. (25 g kg-1) estimularam o crescimento micelial e a germinação de esclerócios. Puerária (25-100 g kg-1) e mucuna (25-100 g kg-1) inibiram a formação de esclerócios. Contudo, benzaldeido a 0,2 e 0,4 ml kg-1 estimulou a formação de esclerócios. Puerária (50 e 100 g kg-1) e casca de Pinus sp. (50 g kg-1) favoreceram a colonização dos esclerócios por Trichoderma sp. O número de plantas de soja (Glycine max) foi maior e o número de plantas doentes foi mais baixo em solos com puerária (50 e 100 g kg-1), mucuna (50 e 100 g kg-1) e casca de Pinus sp. (50 g kg-1) do que em solos sem estes resíduos. A severidade de doença em tomateiro (Lycopersicon esculentum) foi baixa em solo com puerária ou mucuna (30 e 35 g kg-1) e casca de Pinus sp. (35 g kg-1). Pós-secos de puerária, mucuna ou casca de Pinus sp. incorporados ao solo podem reduzir a doença devido à redução do inóculo do patógeno

    Pós secos de mucuna e casca de pinus adicionados ao solo reduzem a doença causada por Rhizoctonia solani em soja

    Get PDF
    As doenças em soja (Glycine max) causadas por Rhizoctonia solani são um sério problema ao redor do mundo. A incorporação ao solo de resíduos orgânicos é uma alternativa para o controle destas doenças. Neste estudo, benzaldeido e pós-secos de kudzu (Pueraria lobata), mucuna (Mucuna deeringiana) e casca de pinus (Pinus spp.) foram usados com o objetivo de melhorar o crescimento de plantas de soja e de diminuir a doença causada por R. solani (AG-4). Benzaldehyde (0,1-0,4 mL/kg de solo) e mucuna (25-100 g/kg) reduziram significativamente (P < 0.05) o crescimento micelial de R. solani em experimentos de laboratório. Em experimentos conduzidos em casa de vegetação a porcentagem de plantas sobreviventes foi maior em solo com casca de pinus e mucuna (50-100 g/kg). Em solo tratado com kudzu (r²=0,91) ou mucuna (r²=0,94), houve tendência significativa em aumentar a massa fresca das plantas de soja. Em microparcelas de campo solos com mucuna (r²=0,85) ou com casca de pinus (r²=0,61) reduziram significativamente a quantidade de doença. A quantidade de Bacillus megaterium (r²=0,87) e Trichoderma hamatum (r²=0,92) e a hidrólise de diacetato fluoresceina (r²=0,91) foram maiores em solo com doses crescentes de mucuna, indicando uma maior atividade microbiana. Neste estudo conclui-se que pós-secos de mucuna e casca de pinus, incorporados ao solo, podem reduzir a doença causada por R. solani em soja.Diseases induced by Rhizoctonia solani, like damping-off and root and stem rot on soybean (Glycine max), are a serious problem around the world. The addition of some organic material to soil is an alternative control for these diseases. In this study, benzaldehyde and dried powders of kudzu (Pueraria lobata), velvetbean or mucuna (Mucuna deeringiana), and pine bark (Pinus spp.) were used in an attempt to improve soybean plant growth and to reduce the disease R. solani (AG-4) causes on soybean. Benzaldehyde (0.1-0.4 mL/kg of soil) and velvetbean (25-100 g/kg) significantly (P < 0.05) reduced mycelial growth of R. solani in laboratory tests. In greenhouse experiments, the percentage of non-diseased plants was higher in treatments with pine bark and velvetbean (50-100 g/kg). In soil treated with kudzu (r²=0.91) or velvetbean (r²=0.94), increasing rates of these amendments tended to increase plant fresh mass. In microplot field conditions, soil amended with velvetbean (r²=0.85) and pine-bark (r²=0.61) significantly reduced disease on soybean. Numbers of Bacillus megaterium (r²=0.87) and Trichoderma hamatum (r²=0.92) and hydrolysis of fluorescein diacetate (r²=0.91) were higher in soil amended with increasing rates of velvetbean, indicating an increase in microbial activity. From this study it is concluded that dried powders of velvetbean and pine bark added to soil can reduce Rhizoctonia-induced disease on soybean

    Efeitos de resíduos orgânicos no solo na germinação de esclerócios, no crescimento micelial e na ocorrência de doenças induzidas por Sclerotium rolfsii

    Get PDF
    The addition of organic residues to soil is an option to control some soil-borne diseases. Benzaldehyde and powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine-bark (Pinus elliottii and P. taeda) added to soil could reduce certain soil-borne diseases. This study evaluated the effects of benzaldehyde and the dried powders of kudzu, velvetbean, and pine-bark as soil amendments on germination and formation of sclerotia, on mycelial growth of Sclerotium rolfsii, on plant survival, and disease incidence. The data showed that high amounts of benzaldehyde (0.4 ml kg-1 of soil) and velvetbean (100 g kg-1) inhibited S. rolfsii mycelial growth and sclerotium germination. However, low amounts of benzaldehyde (0.1 ml kg-1), kudzu (25 g kg-1), and pine-bark (25 g kg-1) stimulated mycelial growth and sclerotium germination. Kudzu (25-100 g kg-1) and velvetbean (25-100 g kg-1) inhibited the formation of sclerotia. Nevertheless, benzaldehyde at 0.2 and 0.4 ml kg-1 stimulated the formation of sclerotia. Kudzu (50 and 100 g kg-1) and pine-bark (50 g kg-1) favored the colonization of sclerotia by Trichoderma sp. The numbers of soybean (Glycine max) plants were higher and diseased plants were lower than the non-amend soil in the following treatments: kudzu (50 and 100 g kg-1), velvetbean (50 and 100 g kg-1), and pine-bark (50 g kg-1). Disease severity on tomato (Lycopersicon esculentum) plants was low in soil treated with kudzu or velvetbean (30 and 35 g kg-1) and pine-bark (35 g kg-1). Dried powders of kudzu, velvetbean, or pine-bark added to soil can reduce disease by reducing pathogen inoculum.The addition of organic residues to soil is an option to control some soil-borne diseases. Benzaldehyde and powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine-bark (Pinus elliottii and P. taeda) added to soil could reduce certain soil-borne diseases. This study evaluated the effects of benzaldehyde and the dried powders of kudzu, velvetbean, and pine-bark as soil amendments on germination and formation of sclerotia, on mycelial growth of Sclerotium rolfsii, on plant survival, and disease incidence. The data showed that high amounts of benzaldehyde (0.4 ml kg-1 of soil) and velvetbean (100 g kg-1) inhibited S. rolfsii mycelial growth and sclerotium germination. However, low amounts of benzaldehyde (0.1 ml kg-1), kudzu (25 g kg-1), and pine-bark (25 g kg-1) stimulated mycelial growth and sclerotium germination. Kudzu (25-100 g kg-1) and velvetbean (25-100 g kg-1) inhibited the formation of sclerotia. Nevertheless, benzaldehyde at 0.2 and 0.4 ml kg-1 stimulated the formation of sclerotia. Kudzu (50 and 100 g kg-1) and pine-bark (50 g kg-1) favored the colonization of sclerotia by Trichoderma sp. The numbers of soybean (Glycine max) plants were higher and diseased plants were lower than the non-amend soil in the following treatments: kudzu (50 and 100 g kg-1), velvetbean (50 and 100 g kg-1), and pine-bark (50 g kg-1). Disease severity on tomato (Lycopersicon esculentum) plants was low in soil treated with kudzu or velvetbean (30 and 35 g kg-1) and pine-bark (35 g kg-1). Dried powders of kudzu, velvetbean, or pine-bark added to soil can reduce disease by reducing pathogen inoculum

    Pós-secos de kudzu, mucuna e casca de pinus adicionados ao solo aumentam a população microbiana e diminuem a murcha por esclerócio em soja

    Get PDF
    Southern blight (Sclerotium rolfsii) of soybean (Glycine max) is an important disease throughout the world. Some soil amendments can reduce disease levels by improving soil microbial activity. The main goals of this study were to investigate the effects of soil amendments such as dried powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine bark (Pinus taeda), on soil microbial population and disease caused by S. rolfsii on soybean. Pine bark, velvetbean (mucuna) and kudzu (25 g kg-1) added to soil were effective in reducing disease incidence [non-amended (NA) ~ 39%; amended (A) ~ 2 to 11%)]. Bacillus megaterium was the bacteria most frequently isolated in soils with velvetbean or kudzu (NA ~ log 5.7 CFU g-1 of dried soil; A ~ log 6.2). Soils with velvetbean and kudzu stimulated increase in population of Enterobacter aerogenes (NA ~ log 3; A ~ log 5.1-5.8). Pseudomonas putida population was higher in A than in NA (NA ~ log 4; A ~ log 5.5), and was negatively correlated (r = -0.83, P = 1%) to disease incidence. Soil amended with kudzu and pine bark stimulated increases in populations of Trichoderma koningii (NA ~ log 1.6; A ~ log 2.9) and Penicillium citreonigrum (NA ~ log 1.3; A ~ log 2.6), respectively. Penicillium herquei soil population increased with addition of kudzu (NA ~ log 1.2; A, ~ log 2.5). These microorganisms are antagonists of soil-borne pathogens. Powders of velvetbean, kudzu, and pine bark can increase antagonistic population in soil and reduce disease

    Compendium of peanut diseases

    Get PDF
    Compendium of Peanut Diseases, Second Edition is a guide to the identification, diagnosis, and control of peanut diseases and disorders. Bringing together color photographs and authoritative information in a single volume, this convenient compendium is a valuable resource for peanut growers and crop consultants around the world. This compendium has become a standard guidebook for the peanut industry. The contributors are an international group that includes 50 peanut experts from the United States, India, The Peoples Republic of China, Malawi, Australia, Israel, and South Africa. They offer advice on diseases and disorders found in each of the world's major peanut-growing regions. Detailed descriptions of 55 peanut diseases are the core of the book. Covering diseases caused by fungi, bacteria, nematodes, and viruses, these descriptions present detailed information on symptoms, causal organisms, disease cycle, control, host range, transmission, detection, and epidemiology. In addition to diseases, the compendium also describes peanut disorders caused by environmental stress, insects and arthropods, and parasitic flowering plants. Other sections of the compendium cover beneficial organisms, organisms with an undetermined relationship to peanuts, disease management strategies, genetic modification, and a listing of disease and insect resistant cultivars currently available for use by growers and breeder
    corecore