9 research outputs found

    Studies on the nonlinear optical properties of two-step GaAs/Ga1−xAlxAs quantum well

    No full text
    In this paper, the numerical computation for the absorption coefficient and the relative refractive index change, considering the third order correction nonlinear optical properties, is reported. This study was performed for a symmetric two-step GaAs/Ga1−xAlxAs quantum well, subjected to a constant electric field applied along the growth direction z, and an in-plane constant magnetic field B. We also consider the intense laser field effect, characterized through the laser-dressing parameter α0. The electronic structure computation was obtained by working under the effective mass approximation and the Schödinger equation was solved by diagonalization procedure. The optical properties are calculated by using the well-established compact density matrix formalism expressions for the nonlinear optical properties of interest. In general, we found that the structural parameters, as the step-like potential or the central barrier, permit the resonant peak and the amplitude design. We also found that the system becomes more sensitive to electric than to magnetic field, and finally that the intense, non-resonant, laser field can strongly change the optical properties of interest. Our results indicate that the implementation of the step-like potential profile, experimentally feasible, enhance the optical properties of interest, that falls within the THz electromagnetic range, and can be used to design a photodetector, or even can be used for quantum cascade lasers design

    Intra-miniband absorption coefficient in GaAs/AlxGa1−xAs core/shell spherical quantum dot

    No full text
    In this work we reported the theoretical calculations of the absorption coefficient in a GaAs/AlxGa1−xAs core/shell spherical quantum dot as a function of the aluminium concentration x in the direct band-gap regime, and core and shell size (inner radius , and the external one ). The effective mass approximation and the hybrid matrix method were used to calculate the electronic structure of the system. The considered optical absorption transition is between the 1s and 1p electronic states. We found that the computed absorption coefficient experiences a red- and blue-shift as the considered parameters change. The intra-miniband formation is generated by means of the overlap of the absorption coefficient considered in a distribution of the GaAs/AlxGa1−xAs core/shell spherical quantum dots with different core and shell sizes. Based on the obtained results, we proposed that the better way to form an intra-miniband is to consider a GaAs/AlxGa1−xAs core/shell spherical quantum dot with different values on the inner radius instead of increase the external radius value

    Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots

    No full text
    In this paper we theoretically investigate the role of hydrostatic pressure by analyzing its influence on potential barrier's height in GaAs/AlxGa1?xAs core/shell spherical quantum dots. The values of hydrostatic pressure considered here are always below the ??X crossover. In addition, we take into account the barrier shell's size effects and the barrier's aluminum concentration, looking for a description of the features of the intraband optical absorption coefficient in the system. The electronic structure is calculated within the effective mass approximation. From the numerical point of view the hybrid matrix method was implemented to avoid numerical instability issues that appears in the conventional transfer matrix method. The main intersubband optical transition is considered to take place between the 1s and 1p computed electronic states. The results show that the absorption coefficient undergoes first a red-shift and later a more pronounced blue-shift, depending on the AlxGa1?xAs barrier width (wb1). The absorption coefficient experiences a blue-shift as the barrier's aluminum concentration increases, and it is non monotonically red-shifted as the hydrostatic pressure augments, due to the barrier's height pressure dependency. For the chosen system parameters, the absorption coefficient resonant peak lies within the range of 20 to 30 meV, that corresponds to the THz frequency region. Accordingly, this system can be proposed as a building block for photodetectors in the THz electromagnetic spectrum region. © 2019 Elsevier Lt

    Influence of applied external fields on the nonlinear optical properties of a semi-infinite asymmetric AlxGa1−xAs/GaAs quantum well

    No full text
    The asymmetric potential profiles are of great interest from the nonlinear optical properties point of view for semiconductor devices. The reason for this statement is because the existing theories on nonlinear optical properties obviously depends on the dipole matrix element for the involved transitions and an complete characterization for asymmetric potential profiles enables to the semiconductor device designers to have possible ranges of implementation and because the dipole matrix elements strongly depends on the asymmetry of the potential profile. Once the potential profile is well defined, with the desired range on operation, the external factors play also an important role on the optical properties tuning. In particular, in this paper we reported the absorption coefficient and the relative refractive index changes for semi-infinite inverse Gaussian-like profile for an AlxGa1−xAs/GaAs quantum well when is subjected to a z-directed electric field, to an in-plane x-directed magnetic field and finally to a non-resonant intense laser field effect, being the Al concentration the parameter that allows to shape the potential profile. In general, we conclude that the external factor are an efficient way to tune the optical properties that are in the range of the THz spectrum, at least for the intersubband transitions reported here

    Optical properties of a triple AlGaAs/GaAs quantum well purported for quantum cascade laser active region

    No full text
    A theoretical investigation on the conduction electron states in a triple inverse parabolic AlGaAs/GaAs quantum well, designed in the spirit of the active region for a quantum cascade laser, is performed. The study includes the influence of externally applied static electric and magnetic fields. The energy values and corresponding eigenfunctions are determined with the use of the effective mass approximation within the parabolic band description. The information on the allowed states is, then, used to evaluate some coefficients that represent the intraband nonlinear optical response of the structure. Numerical results are presented for the optical absorption and relative refractive index change coefficients as well as for those of nonlinear optical rectification and second harmonic generation. It is discussed that, in general, the amplitude and position of resonant peaks in the calculated quantities can be noticeably affected by the variation in the strength of the applied probe fields. Accordingly, the features of the investigated properties could suitably determine the application of this kind of structures for device proposals, as long as they can affect lasing regime in them

    Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    No full text
    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions

    Intermediate band formation in a δ-doped like QW superlattices of GaAs/AlxGa1−xAs for solar cell design

    No full text
    It is reported a numerical computation of the local density of states for a δ-doped like QW superlattices of AlxGa1−xAs, as a possible heterostructure that, being integrated into a solar cell device design, can provide an intermediate band of allowed states to assist the absorption of photons with lower energies than that of the energy gap of the solar-cell constituent materials. This work was performed using the nearest neighbors tight-binding model including spin. The confining potential caused by the ionized donor impurities in δ-doped impurities seeding that was obtained analytically within the lines of the Thomas-Fermi approximation was reproduced here by the Al concentration x variation. This potential is considered as an external perturbation in the tight-binding methodology and it is included in the diagonal terms of the tight-binding Hamiltonian. Special attention is paid to the width of the intermediate band caused by the change in the considered aluminium concentration x, the inter-well distance between δ-doped like QW wells and the number of them in the superlattice. In general we can conclude that this kind of superlattices can be suitable for intermediate band formation for possible intermediate-band solar cell design

    Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double -doped GaAs quantum wells

    No full text
    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, , , and , are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra
    corecore