11 research outputs found

    Empleo de Giberelinas y fertilización foliar durante la aclimatización de vitroplantas de Piña Cayena Lisa c.v. ¨Serrana¨

    Get PDF
    In the last few years the productions levels of pineapple have decreased. The lack of planting material is one of the factors responsible for such a decrement. Two protocols for pineapple micropropagation have been recently developed: that described by Daquinta (1998), and the one of Escalona (1999). The first one uses conventional micropropagation methods, while the second one employs temporary immersion biorreactors. The critical step of these procedures is the acclimatization stage, because of the low survival and growth rates reaching the plants in this phase. The aim of this work was to evaluate the effect of gibberelins and fertilizer sprays on vitroplants growth. Doses of 0, 5, 100, 150 and 200 mg.l-1 of GA3 (BDH) were tested. Also three frequencies were evaluated: each 5, 10 and 15 days respectively. In a second experiment, four doses of the fertilizer Combi II were spayed on the plants: 0 (distilled water), 5,10 and 15 ml.l-1. Later, the combined application of GA3 and Combi II was measured compared to a control treatment (distilled water). Finally, the effects of GA3 (BDH) and the gibberelins produced by ICIDCA were compared. The sprays of GA3 (BDH) at 100 mg.l-1 twice a month, increased vitroplants growth; however, they caused undesirable morphological abnormalities of the plants. The sprays with the fertilizer Combi II at 5 mg.l-1 also improved plant growth. Its combined application with gibberelins (ICIDCA) at 100 mg.l-1 provoked an homogeneous and significant increment of plant growth.Key words: biotechnology, gibberelic acid, plant growth regulatorsEn los últimos años se ha producido un descenso en la producción de la piña. La carencia de material de plantación es uno de los factores responsables de tal disminución. Recientemente se han desarrollado dos protocolos de micropropagación; el descrito por Daquinta (1998), y el de Escalona (1999) que utilizan métodos de la micropropagación convencional y biorreacrores de inmersión temporal, respectivamente. La etapa crítica de estos procedimientos es la fase de aclimatización, debido a la baja supervivencia y el lento crecimiento de las vitroplantas en esta etapa. El propósito del trabajo fue evaluar el efecto de las aplicaciones de giberelinas y fertilización foliar sobre el crecimiento de las vitroplantas. Se evaluaron las dosis de 0, 50, 100, 150 y 200 mg.l-1 de AG3 (BDH) así como tres frecuencias: cada 5, 10 y 15 días. En un segundo experimento se asperjaron cuatro dosis diferentes del fertilizante Combi II: 0 (agua destilada), 5, 10 y 15 ml.l-1. Luego se evaluó el efecto de la aplicación combinada de AG3 (BDH) y Combi II a 5 ml.l-1, respecto a un tratamiento control (agua destilada). Finalmente se compararon los efectos del AG3 (BDH) y las giberelinas producidas por el ICIDCA. Las aspersiones bimensuales de AG3 (BDH) a 100 mg.l-1 incrementaron el crecimiento de las vitroplantas; sin embargo, provocaron alteraciones morfológicas indeseables de las plantas. Su aplicación combinada con giberelinas (ICIDCA) a 100 mg.l-1 produjo un incremento significativo y homogéneo del crecimiento.Palabras clave: acido giberélico, biotecnología, reguladores del crecimiento vegeta

    Formación de callos a partir de inflorescencias inmaduras en Cedro y Caoba híbrida

    Get PDF
    Meliaceas have great importance in the construction and furniture production, among other applications. Swietenia mahogany x Swietenia macrophylla is a hybrid originally from the Caribbean islands, in Cuba its known as hybrid mahogany. In Swietenia hybrid and Cedrela odorata the natural propagation is by seed and asexual by graft.These forms of propagation are limited, in the production of these species. Biotechnological techniques may help to find new ways for its propagation. The objective of this paper was to provide callus formation in Swietenia mahogany x Swietenia macrophylla and Cedrela odorata for the in vitro propagation. Mature trees of 40 years old (Swietenia hybrids and Cedrela odorata) were used. Young inflorescences from branches were taken from these plants, which were disinfected with the same protocol reported for other Meliaceas and they were established in the culture medium MS + 0-1 mg.l-1 Thidiazuron. Callus nodular with good morphogenic characteristics were obtained. The somatic embryos were achieved in the darkness in Swietenia mahogany x Swietenia macrophyllaKey words: mahogany hybrid, Red Cedar, somatic embryos, ThidiazuronAbbreviations: Thidiazuron- N-1,2,3-thiadiazol-5-yl-N-phenylureaLas Meliáceas son de gran importancia en la construcción y fabricación de muebles, entre otras aplicaciones. Swietenia mahogany x Swietenia macrophylla es un híbrido original de las Islas del Caribe, en Cuba se conoce como Caoba híbrida. La propagación natural de la Caoba híbrida y el Cedro (Cedrela odorata) es por semillas y asexual por injertos. Las mismas son limitadas, aún más cuando se desea introducir la especie a la producción. Las técnicas biotecnológicas pueden ayudar a encontrar nuevas vías para su propagación. El objetivo de este trabajo fue lograr la formación de callos en Swietenia mahogany x Swietenia macrophylla y Cedrela odorata con vistas a inducir la regeneración de plantas a partir de estos callos. Árboles de 40 años de Swietenia híbrida y Cedrela odorata fueron usados. A partir de estas plantas se tomaron inflorescencias jóvenes las cuales fueron desinfectadas con Bicloruro de Mercurio al 0.25% (m/v) durante 10 minutos, que se enjuagaron con agua destilada estéril y fueron establecidas en el medio de cultivo Murashige y Skoog (MS) + 0.1-1.0 mg.l-1 Tidiazuron. Se obtuvieron callos nodulares con buenas características morfogénicas y estructuras embriogénicas en la oscuridad en Caoba híbrida.Palabras clave: Caoba híbrida, Cedro, embrión somático, TidiazuronAbreviaturas: Tidiazuron: N-1,2,3-thiadiazol-5-yl-N-phenylure

    EFECTOS DEL ÁCIDO GIBERÉLICO Y EL PECTIMORF® EN LAS VITROPLANTAS DE PIÑA (ANANAS COMOSUS VAR. COMOSUS) ‘MD-2’ DURANTE LA FASE FINAL DE ACLIMATIZACIÓN / EFFECTS OF GIBBERELLIC ACID AND PECTIMORF® ON PINEAPPLE VITROPLANTS (ANANAS COMOSUS VAR. COMOSUS) ‘MD-2’ DURING THE FINAL PHASE OF ACCLIMATIZATION

    Get PDF
    En la agricultura moderna se requiere de producciones intensivas y limpias. Para ello es determinante garantizar semillas de alta calidad en cantidades masivas que sólo el cultivo in vitro logra en poco tiempo. En la transición in vitro-ex vitro y su posterior permanencia en condiciones de aclimatización se producen notables pérdidas. El empleo de productos como el ácido giberélico y el Pectimorf® para inducir respuestas favorables en las plantas como aumentar su desarrollo foliar y radical respectivamente, que permite superar la calidad y utilizar alternativas que no afecten el medio ambiente. Estos atributos permiten que la investigación se desarrolle con el objetivo de determinar los efectos morfológicos y fisiológicos de estos reguladores de crecimiento vegetal en vitroplantas de piña «MD-2» en condiciones de aclimatización. Se determinaron los efectos de ácido giberélico (100 mg. L-1) y el Pectimorf® (3 mg. L-1) y sus combinaciones sobre los dos grupos de indicadores en la fase final de aclimatización. El ácido giberélico (100 mg.L-1) favoreció el área foliar relativa y la masa fresca de las mismas. Mientras que se combinación con Pectimorf® 3 mg.L-1 favoreció el desarrollo foliar y radical y al mejorar la calidad de las plantas permiten adelantar la salida a camp

    Growth of pineapple plantlets during acclimatisation can be monitored through automated image analysis of the canopy

    Full text link
    [EN] Pineapple is an economically important tropical fruit crop, but the lack of adequate planting material limits its productivity. A range of micropropagation protocols has been developed over the years to address this shortfall. Still, the final stage of micropropagation, i.e. acclimatisation, remains a challenge as pineapple plantlets grow very slowly. Several studies have been conducted focusing on this phase and attempting to improve plantlet growth and establishment, which requires tools for the non-destructive evaluation of growth during acclimatisation. This report describes the use of semi-automated and automated image analysis to quantify canopy growth of pineapple plantlets, during five months of acclimatisation. The canopy area progressively increased during acclimatisation, particularly after 90 days. Regression analyses were performed to determine the relationships between the automated image analysis and morphological indicators of growth. The mathematical relationships between estimations of the canopy area and the fresh and dry weights of intact plantlets, middle-aged leaves (D leaves) and roots showed determination coefficients (R2) between 0.84 and 0.92. We propose an appropriate tool for the simple, objective and non-destructive evaluation of pineapple plantlets growth, which can be generally applied for plant phenotyping, to reduce costs and develop streamlined pipelines for the assessment of plant growthThis research was not covered by any specific grant but supported by internal funds from the Bioplant Centre (Cuba), the Agricultural Research Council-Tropical and Subtropical Crops (South Africa), and the Universitat Politecnica de Valencia (Spain). Authors are also grateful to Mrs Lelurlis Napoles for her experienced technical assistance.Soto, G.; Lorente, G.; Mendoza, J.; Báez, ED.; Lorenzo, CM.; Rodríguez, R.; Hajari, E.... (2020). Growth of pineapple plantlets during acclimatisation can be monitored through automated image analysis of the canopy. The Eurobiotech Journal. 4(4):223-229. https://doi.org/10.2478/ebtj-2020-0026S22322944Chen H, Hu B, Zhao L, Shi D, She Z, Huang X, Priyadarshani S, Niu X, Qin Y. Differential expression analysis of reference genes in pineapple (Ananas comosus l.) during reproductive development and response to abiotic stress, hormonal stimuli. Trop Plant Biol 2019; 12: 67-77.Nath V, Kumar G, Pandey S, Pandey S. Impact of climate change on tropical fruit production systems and its mitigation strategies. In: Sheraz Mahdi S (ed.) Climate Change and Agriculture in India: Impact and Adaptation. 2019. Springer, Berlin, pp. 129-146.Priyadarshani S, Cai H, Zhou Q, Liu Y, Cheng Y, Xiong J, Patson DL, Cao S, Zhao H, Qin Y. An efficient Agrobacterium mediated transformation of pineapple with GFP-tagged protein allows easy, non-destructive screening of transgenic pineapple plants. Biomolecules 2019; 9(10): 617.Wali N. Pineapple (Ananas comosus). In: Nabavi S, Sanches Silva A (eds.) Nonvitamin and nonmineral nutritional nupplements. 2019. Elsevier, pp. 367-373.Escalona M, Lorenzo JC, González B, Daquinta M, Borroto C, González JL, Desjardines Y. Pineapple micropropagation in temporary immersion systems. Plant Cell Rep 1999; 18: 743-748.Gómez D, Escalante D, Hajari E, Vicente O, Sershen, Lorenzo JC. Assessing the effects of in vitro imposed water stress on pineapple growth in relation to biochemical stress indicators using polynomial regression analysis. Not Bot Horti Agrobot Cluj 2020; 48: 162-170.Daquinta M, Benegas R. Brief review of tissue culture of pineapple. Pineap News 1997; 3: 7-9.Botella J, Fairbairn D. Present and future potential of pineapple biotechnology. Acta Hort 2005; 622: 23-28.Wang M-L, Uruu G, Xiong L, He X, Nagai C, Cheah K, Hu J, Nan G-L, Sipes B, Atkinson H. Production of transgenic pineapple (Ananas comosus (L.) Merr.) plants via adventitious bud regeneration. In Vitro Cell Dev Biol-Plant 2009; 45: 112-121.Loyola-González O, Medina-Pérez MA, Hernández-Tamayo D, Monroy R, Carrasco-Ochoa JA, García-Borroto M. A pattern-based approach for detecting pneumatic failures on Temporary Immersion Bioreactors. Sensors 2019; 19(2): 414.Parveen S, Mir H, Ranjan T, Pal AK, Kundu M. Effect of surface sterilants on in vitro establishment of pineapple (Ananas comosus (L.) Merill.) cv. Kew. Curr J Appl Sci Technol 2019; 33(2): 1-6.Venâncio JB, Araújo WF, Chagas EA. Acclimatization of micropropagated seedlings of pineapple cultivars on organic substrates. Científica 2019; 47: 52-61.Yanes-Paz E, González J, Sánchez R (2000) A technology of acclimatization of pineapple vitroplants. Pineap News 2000; 7: 5-6.González R, Laudat T, Arzola M, Méndez R, Marrero P, Pulido L, Dibut B, Lorenzo JC. Effect of Azotobacter chroococcum on in vitro pineapple plants’ growth during acclimatization. In Vitro Cell Dev Biol-Plant 2010; 47(3): 387-390.González R, Serrato R, Molina J, Aragón C, Olalde V, Pulido L, Dibut B, Lorenzo JC. Biochemical and physiological changes produced by Azotobacter chroococcum (INIFAT5 strain) on pineapple in vitro-plantlets during acclimatization. Acta Physiol Plant 2013; 35: 3483-3487.Mengesha A, Ayenew B, Tadesse T. Acclimatization of in vitro propagated pineapple (Ananas comosus (L.), var. Smooth cayenne) plantlets to ex vitro condition in Ethiopia. Am J Plant Sci 2013; 4(2): 317-323.Rodríguez-Escriba RC, Rodríguez R, López D, Lorente GY, Pino Y, Aragón CE, Garza Y, Podestá FE, González-Olmedo JL. High light intensity increases the CAM expression in “MD-2” micro-propagated pineapple plants at the end of the acclimatization stage. Am J Plant Sci 2015; 6(19): 3109-3118.Rodríguez-Escriba RC, Rodríguez-Cartaya ID, Lorente GY, López D, Izquierdo RE, Borroto LS, Garza-García Y, Aragón CE, Podestá FE, Rodríguez R. Efecto del déficit hídrico sobre cambios morfo-fisiológicos y bioquímicos en plantas micropropagadas de piña MD-2 en la etapa final de aclimatización. Cult Trop 2016; 37: 64-73.Lorente-González GY, Pino-Legrat Y, Rodríguez-Escriba RC, Pérez-Borroto LS, Nápoles-Borrero L, Mendoza-Rodríguez J, Cardoso D, Alonso A, Rodríguez-Sánchez R, González-Olmedo J. Foliar fertilization of ‘MD-2’ pineapple plants (Ananas comosus var. comosus) during the acclimatization phase. Newsletter of the Pineapple Working Group, International Society for Horticultural Science 2018; 25: 13-17.Atkinson JA, Lobet G, Noll M, Meyer PE, Griffiths M, Wells DM. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies. GigaScience 2017; 6: gix084.Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. GigaScience 2017; 6: gix083.Gupta SD, Ibaraki Y, Pattanayak A. Development of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plants. Plant Biotech Rep 2013; 7: 91-97.Niazian M, Sadat-Noori SA, Abdipour M, Tohidfar M, Mortazavian SMM. Image processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in ajowan (Trachyspermum ammi (L.) Sprague). In Vitro Cell Dev Biol-Plant 2018; 54: 54-68.Ollier M, Talle V, Brisset AL, Le Bihan Z, Duerr S, Lemmens M, Goudemand E, Robert O, Hilbert JL, Buerstmayr H. Whitened kernel surface: A fast and reliable method for assessing Fusarium severity on cereal grains by digital picture analysis. Plant Breed 2019; 138: 69-81.Wang G, Sun Y, Wang J. Automatic image-based plant disease severity estimation using deep learning. Comp Intel Neurosci 2017; 2017: 2917536.Asaari MSM, Mishra P, Mertens S, Dhondt S, Inzé D, Wuyts N, Scheunders P. Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS J Photogram Rem Sens 2018; 138: 121-138.Py C, Lacoeuille JJ, Teisson C. L´ananas, sa culture, ses produits. Techniques agricoles et productions tropicales vol. 33. Maisoenneuve and Larose 1984; Paris, pp. 44-45.Ivanov Z. The Agricultural Experimentation 1989. Pueblo y Educación, Havana, pp. 332.Aguilar M, Pozo J, Aguilar F, García A, Fernández I, Negreiros J, Sánchez-Hermosilla J. Application of close-range photogrammetry and digital photography analysis for the estimation of leaf area index in a greenhouse tomato culture. Int Arch Photogram Rem Sens Spat Inf Sci 2010; 38(5): 5-10.Minervini M, Abdelsamea MM, Tsaftaris SA. Image-based plant phenotyping with incremental learning and active contours. Ecol Inf 2014; 23: 35-48.Minervini M, Giuffrida MV, Perata P, Tsaftaris SA. Phenotiki: An open software and hardware platform for affordable and easy image‐based phenotyping of rosette‐shaped plants. The Plant J 2017; 90: 204-216.Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I. The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Meth 2018; 14: 6.Rincón Guerrero N, Olarte Quintero MA, Pérez Naranjo JC. Leaf area measurement in photographs taken with a webcam, a cell phone or a semi professional camera. Rev Fac Nac Agron Medellín 2012; 65: 6399-6405.Guo W, Zheng B, Duan T, Fukatsu T, Chapman S, Ninomiya S (2017) EasyPCC: benchmark datasets and tools for high-throughput measurement of the plant canopy coverage ratio under field conditions. Sensors 2017; 17: 798.Chien C-L, Tseng D-C (2011) Color image enhancement with exact HSI color model. Int J Innov Comp Inf Cont 2011; 7: 6691-6710

    Use of gibberelins and fertilizer sprays during the acclimatization of pineapple Smooth Cayenne c.v. ‘Serrana’ vitroplants

    No full text
    In the last few years the productions levels of pineapple have decreased. The lack of planting material is one of the factors responsible for such a decrement. Two protocols for pineapple micropropagation have been recently developed: that described by Daquinta (1998), and the one of Escalona (1999). The first one uses conventional micropropagation methods, while the second one employs temporary immersion biorreactors. The critical step of these procedures is the acclimatization stage, because of the low survival and growth rates reaching the plants in this phase. The aim of this work was to evaluate the effect of gibberelins and fertilizer sprays on vitroplants growth. Doses of 0, 5, 100, 150 and 200 mg.l-1 of GA3 (BDH) were tested. Also three frequencies were evaluated: each 5, 10 and 15 days respectively. In a second experiment, four doses of the fertilizer Combi II were spayed on the plants: 0 (distilled water), 5,10 and 15 ml.l-1. Later, the combined application of GA3 and Combi II was measured compared to a control treatment (distilled water). Finally, the effects of GA3 (BDH) and the gibberelins produced by ICIDCA were compared. The sprays of GA3 (BDH) at 100 mg.l-1 twice a month, increased vitroplants growth; however, they caused undesirable morphological abnormalities of the plants. The sprays with the fertilizer Combi II at 5 mg.l-1 also improved plant growth. Its combined application with gibberelins (ICIDCA) at 100 mg.l-1 provoked an homogeneous and significant increment of plant growth. Key words: biotechnology, gibberelic acid, plant growth regulator

    Morpho-physiological changes in pineapple plantlets [Ananas comosus (L.) merr.] during acclimatization Mudanças morfofisiológicas em plântulas de abacaxi [Ananas comosus (L.) Merr.] durante a aclimatização

    No full text
    Pineapple producing countries lack good quality propagation material to expand cultivars into new areas. Previously, research protocols may increase the offer of high quality plantlets and speed the introduction of new pineapple cultivars. The present work is to evaluate the morpho-physiological changes in plantlets of pineapple &#91;Ananas comosus (L.) Merr. 'MD-2'&#93; during the acclimatization phase. Plantlets were acclimatized under 80% relative humidity, 25.5 °C temperature and photosynthetic photon flux of 400-500 µmol m-2 s-1 as average for 45 d under natural photoperiods. All measurements (plant length, number of leaves and roots, fresh weight, width and length of leaf 'D', net photosynthesis and total transpiration rate) were carried out at the end of in vitro rooting phase coincident with 0 d of acclimatization and at 15, 30 and 45 d thereafter. Photosynthetic activity of in vitro plantlets did not increase during the first 30 d of the acclimatization phase. After 30 d, photosynthetic activity ranged from 5.72 to 9.36 µmol CO2 m-2 s-1 while total transpiration ranged from 6.0 to 1.42 mmol H2O m-2 s-1. During the first 30 days there were no significant differences in number of leaves, length or width of the longest ('D') leaf (cm) or plant length (cm). However, after 45 days plant fresh weight (g), length and width of the 'D' leaf (cm) and root number all increased significantly, while transpiration (mmol H2O m-2 s-1) declined. There were small but significant decreases in chlorophyll a and b (µg g-1 mf.). Increased photosynthetic activity after 30 d shows that the increase in light intensity and the reduction of relative humidity during acclimatization did not constitute inhibitory factors.<br>Os países produtores do abacaxi precisam de mudas de boa qualidade para a introdução de novas culturas nas áreas de cultivo. Os protocolos de pesquisa podem aumentar a oferta de mudas de alta qualidade e acelerar a introdução de novas culturas do abacaxi. O estudo apresentado teve como objetivo avaliar as alterações morfofisiológicas de mudas de abacaxi &#91;Ananas comosus (L.) Merr. 'MD-2'&#93;, durante a fase de aclimatação. As plantas foram aclimatizadas baseadas em um regímen de 80% de humidade relativa, uma temperatura de 25°C e um fluxo médio de fótones fotossinteticamente ativos de 400-500 µmol m-2 s-1, durante 45 dias em condições naturais de iluminação. As medições todas (comprimento da planta, número de folhas, comprimento, largura da folha maior 'D', taxa fossintetica e taxa transpiratória total) foram feitas no final da fase do enraizamento in vitro a coincidir com a aclimatização no período de 0, 15, 30 e 45 dias após aclimatização. Depois de 30 dias, a atividade fotossintética variou entre 5,72 e 9,36 µmol CO2 m-2 s-1, enquanto a transpiração total variou de 6,0 a 1,42 mmol H2O m-2 s-1. Durante os primeiros 30 dias, não foram registradas diferenças significativas entre o e comprimento da planta, número de folhas e comprimento e largura da folha maior 'D'. No entanto, após 45 dias a massa fresca da planta (g), comprimento e largura da lâmina 'D' (cm) e o número de raízes aumentarem significativamente, enquanto a transpiração (mmol H2O m-2 s-1) foi reduzida. As clorofilas a e b (µg g-1 mf) diminuíram e mostraram diferenças pequenas, mas significativas. O aumento da atividade fotossintética após 30 dias mostrou que o aumento da intensidade luminosa e redução da umidade relativa não são fatores inibidores desta atividade durante a aclimatização

    Callus formation from immature inflorescence of cedar and hybrids mahogany

    No full text
    Meliaceas have great importance in the construction and furniture production, among other applications. Swietenia mahogany x Swietenia macrophylla is a hybrid originally from the Caribbean islands, in Cuba its known as hybrid mahogany. In Swietenia hybrid and Cedrela odorata the natural propagation is by seed and asexual by graft.These forms of propagation are limited, in the production of these species. Biotechnological techniques may help to find new ways for its propagation. The objective of this paper was to provide callus formation in Swietenia mahogany x Swietenia macrophylla and Cedrela odorata for the in vitro propagation. Mature trees of 40 years old (Swietenia hybrids and Cedrela odorata) were used. Young inflorescences from branches were taken from these plants, which were disinfected with the same protocol reported for other Meliaceas and they were established in the culture medium MS + 0-1 mg.l-1 Thidiazuron. Callus nodular with good morphogenic characteristics were obtained. The somatic embryos were achieved in the darkness in Swietenia mahogany x Swietenia macrophylla Key words: mahogany hybrid, Red Cedar, somatic embryos, Thidiazuron Abbreviations: Thidiazuron- N-1,2,3-thiadiazol-5-yl-N-phenylure

    Callus induction in meliacea exotics (Khaya nyasica Stapf y Toona ciliata)

    No full text
    Meliaceas are very important for the programs of construction and furniture production, among other applications. Khaya nyasica is a Meliacea originally from Africa, as African Caoba. Toona ciliata is a Meliacea originally from Himalayan Region, known in Cuba as Cedro of Himalayan. Natural regeneration in these species occur by seed and grafting. These sorts of propagation are limited, when it is wished to introduced these species in the production. The objective of this paper was to provide callus formation in Toona ciliata for in vitro propagation. Mature trees of 20 year in Khaya nyasica and of 2-3 years in Toona ciliata were used. In order to use rachis of young branchesthese these plantsthey were disinfected with same protocol reported for another Meliaceas and they were established in the tissue medium MS + 0-1 mg.l-1 Thidiazuron. Nodular calli with good morphogenic characteristicwere obtained, in the explants the calli formation began by cut ends. The shoots were achieved in darkness and plants regeneration in light in Toona ciliata. Key words: callus, Caoba African, Cedro of Himalayan, plants regeneration, Thidiazuro
    corecore