2 research outputs found

    Detection of long non-coding RNAs in human breastmilk extracellular vesicles: Implications for early child development

    No full text
    <p>Breastmilk has many documented beneficial effects on the developing human infant, but the components of breastmilk that influence these developmental pathways have not been fully elucidated. Increasing evidence suggests that non-coding RNAs encapsulated in extracellular vesicles (EVs) represent an important mechanism of communication between the mother and child. Long non-coding RNAs (lncRNAs) are of particular interest given their key role in gene expression and development. However, it is not known whether breastmilk EVs contain lncRNAs. We used qRT-PCR to determine whether EVs isolated from human breastmilk contain lncRNAs previously reported to be important for developmental processes. We detected 55 of the 87 screened lncRNAs in EVs from the 30 analyzed breastmilk samples, and CRNDE, DANCR, GAS5, SRA1 and ZFAS1 were detected in >90% of the samples. GAS5, SNHG8 and ZFAS1 levels were highly correlated (Spearman's rho > 0.9; <i>P</i> < 0.0001), which may indicate that the loading of these lncRNAs into breastmilk EVs is regulated by the same pathways. The detected lncRNAs are important epigenetic regulators involved in processes such as immune cell regulation and metabolism. They may target a repertoire of recipient cells in offspring and could be essential for child development and health. Further experimental and epidemiological studies are warranted to determine the impact of breastmilk EV-encapsulated lnRNAs in mother to child signaling.</p

    Long noncoding RNA expression in the cervix mid-pregnancy is associated with the length of gestation at delivery

    No full text
    <p>Infants born preterm are at increased risk of multiple morbidities and mortality. Why some women deliver preterm remains poorly understood. Prior studies have shown that cervical microRNA expression and DNA methylation are associated with the length of gestation. However, no study has examined the role of long noncoding RNAs (lncRNAs) in the cervix during pregnancy. To determine whether expression of lncRNAs is associated with length of gestation at delivery, we analyzed RNA from cervical swabs obtained from 78 women during pregnancy (mean 15.5, SD 5.0, weeks of gestation) who were participating in the Spontaneous Prematurity and Epigenetics of the Cervix (SPEC) Study in Boston, MA, USA. We used a PCR-based platform and found that 9 lncRNAs were expressed in at least 50% of the participants. Of these, a doubling of the expression of <i>TUG1, TINCR</i>, and <i>FALEC</i> was associated with shorter lengths of gestation at delivery [2.8 (95% CI: 0.31, 5.2); 3.3 (0.22, 6.3); and 4.5 (7.3, 1.6) days shorter respectively]. Of the lncRNAs analyzed, none was statistically associated with preterm birth, but expression of <i>FALEC</i> was 2.6-fold higher in women who delivered preterm vs. term (<i>P </i>= 0.051). These findings demonstrate that lncRNAs can be measured in cervical samples obtained during pregnancy and are associated with subsequent length of gestation at delivery. Further, this study supports future work to replicate these findings in other cohorts and perform mechanistic studies to determine the role of lncRNAs in the cervix during pregnancy.</p
    corecore