8,707 research outputs found

    NEW TECHNOLOGIES IN BIOFUEL PRODUCTION

    Get PDF
    Resource /Energy Economics and Policy,

    Cellulosic Ethanol Technology Assessment

    Get PDF
    Resource /Energy Economics and Policy,

    Competition through selective inhibitory synchrony

    Full text link
    Models of cortical neuronal circuits commonly depend on inhibitory feedback to control gain, provide signal normalization, and to selectively amplify signals using winner-take-all (WTA) dynamics. Such models generally assume that excitatory and inhibitory neurons are able to interact easily, because their axons and dendrites are co-localized in the same small volume. However, quantitative neuroanatomical studies of the dimensions of axonal and dendritic trees of neurons in the neocortex show that this co-localization assumption is not valid. In this paper we describe a simple modification to the WTA circuit design that permits the effects of distributed inhibitory neurons to be coupled through synchronization, and so allows a single WTA to be distributed widely in cortical space, well beyond the arborization of any single inhibitory neuron, and even across different cortical areas. We prove by non-linear contraction analysis, and demonstrate by simulation that distributed WTA sub-systems combined by such inhibitory synchrony are inherently stable. We show analytically that synchronization is substantially faster than winner selection. This circuit mechanism allows networks of independent WTAs to fully or partially compete with each other.Comment: in press at Neural computation; 4 figure

    Solving constraint-satisfaction problems with distributed neocortical-like neuronal networks

    Get PDF
    Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSPs planar four-color graph coloring, maximum independent set, and Sudoku on this substrate, and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of non-saturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by non-linear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation, and also offer insight into the computational role of dual inhibitory mechanisms in neural circuits.Comment: Accepted manuscript, in press, Neural Computation (2018

    Collective stability of networks of winner-take-all circuits

    Full text link
    The neocortex has a remarkably uniform neuronal organization, suggesting that common principles of processing are employed throughout its extent. In particular, the patterns of connectivity observed in the superficial layers of the visual cortex are consistent with the recurrent excitation and inhibitory feedback required for cooperative-competitive circuits such as the soft winner-take-all (WTA). WTA circuits offer interesting computational properties such as selective amplification, signal restoration, and decision making. But, these properties depend on the signal gain derived from positive feedback, and so there is a critical trade-off between providing feedback strong enough to support the sophisticated computations, while maintaining overall circuit stability. We consider the question of how to reason about stability in very large distributed networks of such circuits. We approach this problem by approximating the regular cortical architecture as many interconnected cooperative-competitive modules. We demonstrate that by properly understanding the behavior of this small computational module, one can reason over the stability and convergence of very large networks composed of these modules. We obtain parameter ranges in which the WTA circuit operates in a high-gain regime, is stable, and can be aggregated arbitrarily to form large stable networks. We use nonlinear Contraction Theory to establish conditions for stability in the fully nonlinear case, and verify these solutions using numerical simulations. The derived bounds allow modes of operation in which the WTA network is multi-stable and exhibits state-dependent persistent activities. Our approach is sufficiently general to reason systematically about the stability of any network, biological or technological, composed of networks of small modules that express competition through shared inhibition.Comment: 7 Figure

    Binary time series generated by chaotic logistic maps

    Get PDF
    This paper examines stochastic pairwise dependence structures in binary time series obtained from discretised versions of standard chaotic logistic maps. It is motivated by applications in communications modelling which make use of so-called chaotic binary sequences. The strength of non-linear stochastic dependence of the binary sequences is explored. In contrast to the original chaotic sequence, the binary version is non-chaotic with non-Markovian non-linear dependence, except in a special case. Marginal and joint probability distributions, and autocorrelation functions are elicited. Multivariate binary and more discretised time series from a single realisation of the logistic map are developed from the binary paradigm. Proposals for extension of the methodology to other cases of the general logistic map are developed. Finally, a brief illustration of the place of chaos-based binary processes in chaos communications is given.Binary sequence; chaos; chaos communications; dependence; discretisation; invariant distribution; logistic map; randomness
    • …
    corecore