8,707 research outputs found
NEW TECHNOLOGIES IN BIOFUEL PRODUCTION
Resource /Energy Economics and Policy,
Cellulosic Ethanol Technology Assessment
Resource /Energy Economics and Policy,
Competition through selective inhibitory synchrony
Models of cortical neuronal circuits commonly depend on inhibitory feedback
to control gain, provide signal normalization, and to selectively amplify
signals using winner-take-all (WTA) dynamics. Such models generally assume that
excitatory and inhibitory neurons are able to interact easily, because their
axons and dendrites are co-localized in the same small volume. However,
quantitative neuroanatomical studies of the dimensions of axonal and dendritic
trees of neurons in the neocortex show that this co-localization assumption is
not valid. In this paper we describe a simple modification to the WTA circuit
design that permits the effects of distributed inhibitory neurons to be coupled
through synchronization, and so allows a single WTA to be distributed widely in
cortical space, well beyond the arborization of any single inhibitory neuron,
and even across different cortical areas. We prove by non-linear contraction
analysis, and demonstrate by simulation that distributed WTA sub-systems
combined by such inhibitory synchrony are inherently stable. We show
analytically that synchronization is substantially faster than winner
selection. This circuit mechanism allows networks of independent WTAs to fully
or partially compete with each other.Comment: in press at Neural computation; 4 figure
Solving constraint-satisfaction problems with distributed neocortical-like neuronal networks
Finding actions that satisfy the constraints imposed by both external inputs
and internal representations is central to decision making. We demonstrate that
some important classes of constraint satisfaction problems (CSPs) can be solved
by networks composed of homogeneous cooperative-competitive modules that have
connectivity similar to motifs observed in the superficial layers of neocortex.
The winner-take-all modules are sparsely coupled by programming neurons that
embed the constraints onto the otherwise homogeneous modular computational
substrate. We show rules that embed any instance of the CSPs planar four-color
graph coloring, maximum independent set, and Sudoku on this substrate, and
provide mathematical proofs that guarantee these graph coloring problems will
convergence to a solution. The network is composed of non-saturating linear
threshold neurons. Their lack of right saturation allows the overall network to
explore the problem space driven through the unstable dynamics generated by
recurrent excitation. The direction of exploration is steered by the constraint
neurons. While many problems can be solved using only linear inhibitory
constraints, network performance on hard problems benefits significantly when
these negative constraints are implemented by non-linear multiplicative
inhibition. Overall, our results demonstrate the importance of instability
rather than stability in network computation, and also offer insight into the
computational role of dual inhibitory mechanisms in neural circuits.Comment: Accepted manuscript, in press, Neural Computation (2018
Collective stability of networks of winner-take-all circuits
The neocortex has a remarkably uniform neuronal organization, suggesting that
common principles of processing are employed throughout its extent. In
particular, the patterns of connectivity observed in the superficial layers of
the visual cortex are consistent with the recurrent excitation and inhibitory
feedback required for cooperative-competitive circuits such as the soft
winner-take-all (WTA). WTA circuits offer interesting computational properties
such as selective amplification, signal restoration, and decision making. But,
these properties depend on the signal gain derived from positive feedback, and
so there is a critical trade-off between providing feedback strong enough to
support the sophisticated computations, while maintaining overall circuit
stability. We consider the question of how to reason about stability in very
large distributed networks of such circuits. We approach this problem by
approximating the regular cortical architecture as many interconnected
cooperative-competitive modules. We demonstrate that by properly understanding
the behavior of this small computational module, one can reason over the
stability and convergence of very large networks composed of these modules. We
obtain parameter ranges in which the WTA circuit operates in a high-gain
regime, is stable, and can be aggregated arbitrarily to form large stable
networks. We use nonlinear Contraction Theory to establish conditions for
stability in the fully nonlinear case, and verify these solutions using
numerical simulations. The derived bounds allow modes of operation in which the
WTA network is multi-stable and exhibits state-dependent persistent activities.
Our approach is sufficiently general to reason systematically about the
stability of any network, biological or technological, composed of networks of
small modules that express competition through shared inhibition.Comment: 7 Figure
Binary time series generated by chaotic logistic maps
This paper examines stochastic pairwise dependence structures in binary time series obtained from discretised versions of standard chaotic logistic maps. It is motivated by applications in communications modelling which make use of so-called chaotic binary sequences. The strength of non-linear stochastic dependence of the binary sequences is explored. In contrast to the original chaotic sequence, the binary version is non-chaotic with non-Markovian non-linear dependence, except in a special case. Marginal and joint probability distributions, and autocorrelation functions are elicited. Multivariate binary and more discretised time series from a single realisation of the logistic map are developed from the binary paradigm. Proposals for extension of the methodology to other cases of the general logistic map are developed. Finally, a brief illustration of the place of chaos-based binary processes in chaos communications is given.Binary sequence; chaos; chaos communications; dependence; discretisation; invariant distribution; logistic map; randomness
- …