17 research outputs found

    Distribution of an Invasive Aquatic Pathogen (Viral Hemorrhagic Septicemia Virus) in the Great Lakes and Its Relationship to Shipping

    Get PDF
    Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus found in fish from oceans of the northern hemisphere and freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and cell culture assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies). The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation, management of affected populations, and informed regulation of the worldwide trade of aquatic organisms

    61 A Multifaceted Approach to Improving Fish Farming in Kenya’s Lake Victoria Region

    No full text
    OBJECTIVES/GOALS: This project adopts a multifaceted approach to improving aquaculture management practices in Kenya’s Lake Victoria region by identifying fish pathogens, measuring algal toxin levels in commonly consumed fish, surveying fish farming practices, and educating the public. METHODS/STUDY POPULATION: Limited existing data on the state of floating cage culture in Kenya influenced our decision to begin this portion of the project with a brief literature review of potential Nile tilapia pathogens. Databases were screened for mention of disease in either wild or caged Nile tilapia, with emphasis given to those in Lake Victoria. Results were compiled into a spreadsheet and analyzed for frequently occurring pathogens. The next portion involved creating an interview style survey to assess current cage culture management practices in the region. Editing was done to ensure questions remained unbiased, non-leading, culturally sensitive, multilingual and relevant to the situation. Data went through a quality control screening and analysis was conducted through the R programming language. RESULTS/ANTICIPATED RESULTS: Beginning with mortality, of the 93 farms surveyed, data analysis revealed that there is a higher probability that farms will have a mortality of approximately 20%, over the course of a production cycle. For biosecurity and fish health practices, data shows that 97% of farms do not disinfect scooping nets or other fish handling materials when moving from one cage to another. During the 2022-2023 production cycle, 44% of farms experienced fish kills of over 50 fish. 73% of the 93 farms do not contact any organization when a fish kill occurs. In a qualitative answer, it also appears that many farm workers dispose of their dead fish within the lake, feed it to livestock or dogs, or eat it. Algae blooms have been experienced at 80% of the farms surveyed and 43% of farms say they have seen fish gasping at the surface for air. DISCUSSION/SIGNIFICANCE: While farms are implementing good management practices in the areas of cage design, stocking, and feeding practices, there is room for improvement in fish health, biosecurity, and managing algal blooms. The findings provide insight into the areas that should be considered when taking action to improve the welfare of the region

    Diseases and Parasites of Scallops

    No full text
    Knowledge of the diseases and parasites of scallops has continued to change since the second edition of this book (McGladdery et al., 2006). Advancements in the field of scallop health research have followed the broader improvements in the ability to identify disease agents in other aquatic animals. Significant progress has been made in diagnostic capability, particularly the ability to distinguish between infectious pathogens and cryptic histopathological lesions in scallops using molecular techniques. Evidence of this is the progress made in combating opportunistic infections of larvae and juveniles of several scallop species reared under hatchery conditions. There are an increasing number of investigators who pursue the unexplained mortalities in the bivalve hosts using a new generation of diagnostic tools. The diversification of scallop species being brought into stock enhancement and aquaculture programs on a global scale has led to increased contributions from our Asian colleagues. Parallel development of remote underwater photography technology for surveillance and stock assessment purposes as well as suspension culture techniques has greatly improved our capability to detect health challenges in many scallop species, challenges which previously evaded direct observation in the scallop\u27s benthic domain.The present review follows that of Getchell (1991), dividing sections by taxonomic group of pathogen. The updating of these taxonomic divisions attempted to keep up with changes made over the last decade. The listing of pathogens by scallop species also has been continued in Table 1, to facilitate scallop-specific cross-referencing. The infectious agents described in detail in the prior two editions remain to ensure as comprehensive a reference as possible. For clarity, a more encompassing definition of the term pathogen has been embraced as a microorganism capable of causing host damage (Paillard et al., 2004). The general approach is to first discuss the aetiology of the scallop disease, then cover the pathogenesis or host syndromes associated with the disease and finally, describe the mode of action of the pathogen (pathogenicity) if known (Paillard et al., 2004). The components of pathogen virulence emphasised are the genetic, biochemical and structural features that enable it to damage the host. © 2016 Elsevier B.V

    Complementary approaches to diagnosing marine diseases: a union of the modern and the classic

    No full text
    Linking marine epizootics to a specific etiology is notoriously difficult. Recent diagnostic successes show that marine disease diagnosis requires both modern, cutting-edge technology (e.g. metagenomics, quantitative realtime PCR) and more classic methods (e.g. transect surveys, histopathology and cell culture). Here, we discuss how this combination of traditional and modern approaches is necessary for rapid and accurate identification of marine diseases, and emphasize how sole reliance on any one technology or technique may lead disease investigations astray. We present diagnostic approaches at different scales, from the macro (environment, community, population and organismal scales) to the micro (tissue, organ, cell and genomic scales). We use disease case studies from a broad range of taxa to illustrate diagnostic successes from combining traditional and modern diagnostic methods. Finally, we recognize the need for increased capacity of centralized databases, networks, data repositories and contingency plans for diagnosis and management of marine disease

    Distribution of VHSV positive fish in the Great Lakes from 2003 through 2008 as reported by the U.S. Department of Agriculture Animal and Plant Health Inspection Service [12] and the distribution of documented invasion hotspots [18], [27].

    No full text
    <p>Distribution of VHSV positive fish in the Great Lakes from 2003 through 2008 as reported by the U.S. Department of Agriculture Animal and Plant Health Inspection Service <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0010156#pone.0010156-Center1" target="_blank">[12]</a> and the distribution of documented invasion hotspots <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0010156#pone.0010156-Grigorovich1" target="_blank">[18]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0010156#pone.0010156-Cangelosi1" target="_blank">[27]</a>.</p

    Detection of VHSV in fish and water and the presence of VHSV positive fish at sampling sites in and outside of invasion hotspots shown in Figure 1.

    No full text
    <p>Detection of VHSV in fish and water and the presence of VHSV positive fish at sampling sites in and outside of invasion hotspots shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0010156#pone-0010156-g001" target="_blank">Figure 1</a>.</p

    Fish analyzed for VHSV and number of fish determined to be positive with data on fish sizes and known vulnerability to VHSV.

    No full text
    <p>1. VHSV susceptibility is reported by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0010156#pone.0010156-Center1" target="_blank">[12]</a> although other species can be infected.</p
    corecore