4 research outputs found

    Application of the New Generation of Sequencing Technologies for Evaluation of Genetic Consistency of Influenza A Vaccine Viruses

    Get PDF
    For almost half a century, Sanger sequencing has been the conventional method for sequencing DNA. However, its utility for sequencing heterogeneous viral populations is limited because it can only detect mutations that are present in a significant portion of the DNA molecules. Several molecular methods that quantify mutations present at low levels in viral populations were proposed for evaluation of genetic consistency of viral vaccines; however, these methods are only suitable for single site polymorphisms, and cannot be used to screen for unknown mutations

    Enhanced in vivo blood brain barrier transcytosis of macromolecular cargo using an engineered pH-sensitive mouse transferrin receptor binding nanobody

    No full text
    Abstract Background The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. Methods A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. Results The most effective histidine mutant, M1R56H, P96H, Y102H-neurotensin, caused > 8 °C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1R56H, P96H, Y102H-13A7-13A7 in capillary depleted brain lysates peaked at 1 h and were 60% retained at 8 h. A control construct with no brain targets was only 15% retained at 8 h. Addition of the albumin-binding Nb80 nanobody to make M1R56H, P96H, Y102H-13A7-13A7-Nb80 extended blood half-life from 21 min to 2.6 h. At 30–60 min, biotinylated M1R56H, P96H, Y102H-13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2–16 h it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1R56H, P96H, Y102H-13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. Conclusion The pH-sensitive mouse transferrin receptor binding nanobody M1R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications

    Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications

    No full text
    Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing) of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These “weak” segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination
    corecore