7,365 research outputs found

    The role of the equivalent blackbody temperature in the study of Atlantic Ocean tropical cyclones

    Get PDF
    Satellite measured equivalent blackbody temperatures of Atlantic Ocean tropical cyclones are used to investigate their role in describing the convection and cloud patterns of the storms and in predicting wind intensity. The high temporal resolution of the equivalent blackbody temperature measurements afforded with the geosynchronous satellite provided sequential quantitative measurements of the tropical cyclone which reveal a diurnal pattern of convection at the inner core during the early developmental stage; a diurnal pattern of cloudiness in the storm's outer circulation throughout the life cycle; a semidiurnal pattern of cloudiness in the environmental atmosphere surrounding the storms during the weak storm stage; an outward modulating atmospheric wave originating at the inner core; and long term convective bursts at the inner core prior to wind intensification

    Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops

    Get PDF
    A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques

    Drug-like analogues of the parasitic worm-derived immunomodulator ES-62 are therapeutic in the MRL/Lpr model of systemic lupus erythematosus

    Get PDF
    Introduction ES-62, a phosphorylcholine (PC)-containing immunomodulator secreted by the parasitic worm Acanthocheilonema viteae, protects against nephritis in the MRL/Lpr mouse model of systemic lupus erythematosus (SLE). However, ES-62 is not suitable for development as a therapy and thus we have designed drug-like small molecule analogues (SMAs) based around its active PC-moiety. To provide proof of concept that ES-62-based SMAs exhibit therapeutic potential in SLE, we have investigated the capacity of two SMAs to protect against nephritis when administered to MRL/Lpr mice after onset of kidney damage. Methods SMAs 11a and 12b were evaluated for their ability to suppress antinuclear antibody (ANA) generation and consequent kidney pathology in MRL/Lpr mice when administered after the onset of proteinuria. Results SMAs 11a and 12b suppressed development of ANA and proteinuria. Protection reflected downregulation of MyD88 expression by kidney cells and this was associated with reduced production of IL-6, a cytokine that exhibits promise as a therapeutic target for this condition. Conclusions SMAs 11a and 12b provide proof of principle that synthetic compounds based on the safe immunomodulatory mechanisms of parasitic worms can exhibit therapeutic potential as a novel class of drugs for SLE, a disease for which current therapies remain inadequate

    The parasitic worm-derived immunomodulator, ES-62 and its drug-like small molecule analogues exhibit therapeutic potential in a model of chronic asthma

    Get PDF
    Chronic asthma is associated with persistent lung inflammation and long-term remodelling of the airways that have proved refractory to conventional treatments such as steroids, despite their efficacy in controlling acute airway contraction and bronchial inflammation. As its recent dramatic increase in industrialised countries has not been mirrored in developing regions, it has been suggested that helminth infection may protect humans against developing asthma. Consistent with this, ES-62, an immunomodulator secreted by the parasitic worm Acanthocheilonema viteae, can prevent pathology associated with chronic asthma (cellular infiltration of the lungs, particularly neutrophils and mast cells, mucus hyper-production and airway thickening) in an experimental mouse model. Importantly, ES-62 can act even after airway remodelling has been established, arresting pathogenesis and ameliorating the inflammatory flares resulting from repeated exposure to allergen that are a debilitating feature of severe chronic asthma. Moreover, two chemical analogues of ES-62, 11a and 12b mimic its therapeutic actions in restoring levels of regulatory B cells and suppressing neutrophil and mast cell responses. These studies therefore provide a platform for developing ES-62-based drugs, with compounds 11a and 12b representing the first step in the development of a novel class of drugs to combat the hitherto intractable disorder of chronic asthma

    South Atlantic response to El Niño–Southern Oscillation induced climate variability in an ocean general circulation model

    Get PDF
    [1] The response of the South Atlantic Ocean to El Niño-Southern Oscillation (ENSO) is investigated by means of an ocean general circulation model (ORCA2) forced with National Centers for Environmental Prediction (NCEP) reanalyses for the 1948–1999 period. Seasonal ENSO composites suggest that the ENSO-induced wind anomalies play a major role in driving upper ocean temperatures by altering the net surface heat fluxes, the meridional Ekman heat transport, and Ekman pumping. Model diagnostics indicate that the Ekman heat transport changes are in better agreement with the upper ocean temperature anomalies during the first half of the ENSO event whereas, in the latter half, the surface heat flux anomalies agree better. In general, the atmospheric forcing tends to lead to a coherent ocean response with a time lag of about one season. Subsurface temperatures evolve more slowly in response to ENSO forcing than the upper ocean. They receive time-filtered ENSO signals from mainly Ekman pumping (suction) and variations in thermocline depth that result in the poleward and equatorward margins of the subtropical gyre exhibiting temperature anomalies of the same sign but opposite to those in the central regions of the gyre

    Information content of ozone retrieval algorithms

    Get PDF
    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable

    Superspace Geometrical Realization of the N-Extended Super Virasoro Algebra and its Dual

    Get PDF
    We derive properties of N-extended GR super Virasoro algebras. These include adding central extensions, identification of all primary fields and the action of the adjoint representation on its dual. The final result suggest identification with the spectrum of fields in supergravity theories and superstring/M-theory constructed from NSR N-extended supersymmetric GR{\cal {GR}} Virasoro algebras.Comment: 17 pages Latex Typos in TeX file has been correcte
    corecore