4,965 research outputs found

    Clouds, Clumps, Cores & Comets - a Cosmic Chemical Connection?

    Full text link
    We discuss the connection between the chemistry of dense interstellar clouds and those characteristics of cometary matter that could be remnants of it. The chemical evolution observed to occur in molecular clouds is summarized and a model for dense core collapse that can plausibly account for the isotopic fractionation of hydrogen, nitrogen, oxygen and carbon measured in primitive solar system materials is presented.Comment: to be published in Advances in Geoscience

    Microbial biofilm studies of the environmental control and life support system water recovery test for Space Station Freedom

    Get PDF
    NASA is developing a water recovery system (WRS) for Space Station Freedom to reclaim human waste water for reuse by astronauts as hygiene or potable water. A water recovery test (WRT) currently in progress investigates the performance of a prototype of the WRS. Analysis of biofilm accumulation, the potential for microbially influenced corrosion (MIC) in the WRT, and studies of iodine disinfection of biofilm are reported. Analysis of WRT components indicated the presence of organic deposits and biofilms in selected tubing. Water samples for the WRT contained acid-producing and sulfate-reducing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples; however, stainless steel corrosion rates were not accelerated. Biofilm iodine sensitivity tests using an experimental laboratory scale recycled water system containing a microbial check valve (MCV) demonstrated that an iodine concentration of 1 to 2 mg/L was ineffective in eliminating microbial biofilm. For complete disinfection, an initial concentration of 16 mg/L was required, which was gradually reduced by the MCV over 4 to 8 hours to 1 to 2 mg/L. This treatment may be useful in controlling biofilm formation

    Chemical chronology of the Southern Coalsack

    Full text link
    We demonstrate how the observed H2O ice column densities toward three dense globules in the Southern Coalsack could be used to constrain the ages of these sources. We derive ages of ~10^5 yr, in agreement with dynamical studies of these objects. We have modelled the chemical evolution of the globules, and show how the molecular abundances are controlled by both the gas density and the initial chemical conditions as the globules formed. Based on our derived ages, we predict the column densities of several species of interest. These predictions should be straightforward to test by performing molecular line observationsComment: 10 pages, 4 figures, in press at MNRA

    Nitrogen superfractionation in dense cloud cores

    Full text link
    We report new calculations of interstellar 15N fractionation. Previously, we have shown that large enhancements of 15N/14N can occur in cold, dense gas where CO is frozen out, but that the existence of an NH + N channel in the dissociative recombination of N2H+ severely curtails the fractionation. In the light of recent experimental evidence that this channel is in fact negligible, we have reassessed the 15N chemistry in dense cloud cores. We consider the effects of temperatures below 10 K, and of the presence of large amounts of atomic nitrogen. We also show how the temporal evolution of gas-phase isotope ratios is preserved as spatial heterogeneity in ammonia ice mantles, as monolayers deposited at different times have different isotopic compositions. We demonstrate that the upper layers of this ice may have 15N/14N ratios an order of magnitude larger than the underlying elemental value. Converting our ratios to delta-values, we obtain delta(15N) > 3,000 per mil in the uppermost layer, with values as high as 10,000 per mil in some models. We suggest that this material is the precursor to the 15N `hotspots' recently discovered in meteorites and IDPsComment: accepted by MNRA

    An assessment of health management and biosecurity procedures in marine fish farming in Spain

    Get PDF
    Marine fish farming in Spain has experienced problems of performance due to losses caused by infectious diseases. Biosecurity and health management are identified by the Food and Agriculture Organization (FAO) as current priorities for proper aquaculture governance. However, they both transcend the responsibility of farmers and require significant resources, concerted action and cooperation. This study presents the analysis of biosecurity practices on marine fish farms, through a questionnaire-based survey on biosecurity procedures and an analysis of health management practices for different stakeholders. The Strengths, Weaknesses, Opportunities, and Threats (SWOT) technique was implemented, which identified the important threats and weaknesses faced by the sector, such as the risk of direct disease transmission between farms, the high likelihood of importing diseases through juvenile shipments, the chronic lack of communication between stakeholders, and the deficient coordination of health strategies. Strengths included awareness of prevention measures and the availability of expertize of health experts at most levels. On the other hand, the availability of experts together with the need to adapt governance to the current production systems were seen as opportunities. Health management measures themselves were actually already found to be adapted to the type of production but they varied between companies (i.e. categorization and diagnosis of mortalities). Nevertheless, the quality of expertize along the value chain provided by private and public laboratories, research institutes, Health Protection Groups, companies and veterinarians was noteworthy. However, there was still a need for all stakeholders involved in marine fish health to improve diagnostics, provide epidemiological information, biosecurity and prevention measures, as well as to promote transparency for better health governance

    Spin Glass Phase Transition on Scale-Free Networks

    Full text link
    We study the Ising spin glass model on scale-free networks generated by the static model using the replica method. Based on the replica-symmetric solution, we derive the phase diagram consisting of the paramagnetic (P), ferromagnetic (F), and spin glass (SG) phases as well as the Almeida-Thouless line as functions of the degree exponent λ\lambda, the mean degree KK, and the fraction of ferromagnetic interactions rr. To reflect the inhomogeneity of vertices, we modify the magnetization mm and the spin glass order parameter qq with vertex-weights. The transition temperature TcT_c (TgT_g) between the P-F (P-SG) phases and the critical behaviors of the order parameters are found analytically. When 2<λ<32 < \lambda < 3, TcT_c and TgT_g are infinite, and the system is in the F phase or the mixed phase for r>1/2r > 1/2, while it is in the SG phase at r=1/2r=1/2. mm and qq decay as power-laws with increasing temperature with different λ\lambda-dependent exponents. When λ>3\lambda > 3, the TcT_c and TgT_g are finite and related to the percolation threshold. The critical exponents associated with mm and qq depend on λ\lambda for 3<λ<53 < \lambda < 5 (3<λ<43 < \lambda < 4) at the P-F (P-SG) boundary.Comment: Phys. Rev. E in pres
    • …
    corecore