7,594 research outputs found

    Models for the size distribution of businesses in a price driven market

    Full text link
    A microscopic model of aggregation and fragmentation is introduced to investigate the size distribution of businesses. In the model, businesses are constrained to comply with the market price, as expected by the customers, while customers can only buy at the prices offered by the businesses. We show numerically and analytically that the size distribution scales like a power-law. A mean-field version of our model is also introduced and we determine for which value of the parameters the mean-field model agrees with the microscopic model. We discuss to what extent our simple model and its results compare with empirical data on company sizes in the U.S. and debt sizes in Japan. Finally, possible extensions of the mean-field model are discussed, to cope with other empirical data.Comment: 12 pages, 2 figures, submitted for publicatio

    Strategy Selection in the Minority Game

    Full text link
    We investigate the dynamics of the choice of an active strategy in the minority game. A history distribution is introduced as an analytical tool to study the asymmetry between the two choices offered to the agents. Its properties are studied numerically. It allows us to show that the departure from uniformity in the initial attribution of strategies to the agents is important even in the efficient market. Also, an approximate expression for the variance of the number of agents at one side in the efficient phase is proposed. All the analytical propositions are supported by numerical simulations of the system.Comment: Latex file, 17 page, 4 figure

    Analytical design and performance studies of the nuclear light bulb engine

    Get PDF
    Analytical studies were conducted to investigate in detail the heat balance characteristics of the nuclear light bulb engine. Distributions of energy deposition to all engine components from the fission process, conduction and convection, and thermal radiation were considered. Where uncertainties in basic data or heat transfer characteristics were encountered, ranges of heat loads were calculated and reference values were selected. The influence of these heat loads on engine performance, space radiator requirements, and cooling sequence and cooling circuit designs was determined. The analyses resulted in revisions to the previously reported reference engine characteristics, principally in the heat loads to some engine components and in the cooling sequence. These revisions were incorporated in the engine dynamics digital computer simulation program. No significant changes occurred in the dynamic response of the engine to perturbations in fuel injection rate, reactivity or exhaust nozzle area

    Analytical studies of nuclear light bulb engine radiant heat transfer and performance characteristics

    Get PDF
    Analytical model of nuclear light bulb engine radiant heat transfer and engine performance, dynamics and control, heat loads and shutdown characteristic

    Solar sustained plasma/absorber conceptual design

    Get PDF
    A space power system concept was evaluated which uses concentrated solar energy to heat a working fluid to temperatures as high as 4000 K. The high temperature working fluid could be used for efficient electric power production in advanced thermal or magnetohydrodynamic conversion cycles. Energy absorber configurations utilizing particles or cesium vapor absorber material were investigaed. Results of detailed radiant heat transfer calculations indicated approximately 86 percent of the incident solar energy could be absorbed within a 12-cm-dia flowing stream of gas borne carbon particles. Calculated total energy absorption in the cesium vapor seeded absorber configuration ranged from 34 percent to 64 percent of the incident solar energy. Solar flux concentration ratios of between approximately 3000 and 10,000 will be required to sustain absorber temperatures in the range from 3000 K to 4000 K

    The role of the equivalent blackbody temperature in the study of Atlantic Ocean tropical cyclones

    Get PDF
    Satellite measured equivalent blackbody temperatures of Atlantic Ocean tropical cyclones are used to investigate their role in describing the convection and cloud patterns of the storms and in predicting wind intensity. The high temporal resolution of the equivalent blackbody temperature measurements afforded with the geosynchronous satellite provided sequential quantitative measurements of the tropical cyclone which reveal a diurnal pattern of convection at the inner core during the early developmental stage; a diurnal pattern of cloudiness in the storm's outer circulation throughout the life cycle; a semidiurnal pattern of cloudiness in the environmental atmosphere surrounding the storms during the weak storm stage; an outward modulating atmospheric wave originating at the inner core; and long term convective bursts at the inner core prior to wind intensification
    corecore