6 research outputs found

    Evaluation of Nearshore Coral Reef Condition and Identification of Indicators in the Main Hawaiian Islands

    Get PDF
    PhD University of Hawaii at Manoa 2005Includes bibliographical references (leaves 190–203).The primary objective of this research is to identify indicators that can accurately predict decline in the condition of Hawaiian coral reef communities and aid in the assessment of identification of the forcing functions involved. This large-scale assessment, including all eight islands, covers the greatest spatial scale in the Main Hawaiian Islands to date. The major results of this research include the development of an extensive baseline database for future research and comparisons, the description of Hawaiian coral reef communities on a large scale, and the identification of key factors influential in explaining spatial patterns of biotic populations and their linkages to impaired conditions. Although it was determined that no single factor had a correlation strong enough to substitute as a direct measure of coral cover, a combination of both natural (topographic relief, depth and wave energy) and anthropogenic (human population and stream distance) factors are most influential in explaining the variability in coral community structure. A similar pattern exists for fishes, where both natural (topographic relief, coral diversity, coralline algae, precipitation, and latitude) and anthropogenic (human population and organics) variables heavily influence fish communities. With substrate rugosity most highly correlated with fish population parameters, identifying areas of high spatial complexity can provide a simple measure to assist managers in designing and implementing marine reserves and proposing fishing regulations. Sediment composition and grain-size can be indicators of environmental stress. Although wave energy is the most important factor in structuring Hawaiian coral reef communities, when fine sediment overwhelms the system it becomes the dominant forcing function on community structure. A statistical model was developed and tested to rank reef condition

    The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi

    No full text
    Until recently, subtropical Hawaiʻi escaped the major bleaching events that have devastated many tropical regions, but the continued increases in global long-term mean temperatures and the apparent ending of the Pacific Decadal Oscillation (PDO) cool phase have increased the risk of bleaching events. Climate models and observations predict that bleaching in Hawaiʻi will occur with increasing frequency and increasing severity over future decades. A freshwater “kill” event occurred during July 2014 in the northern part of Kāneʻohe Bay that reduced coral cover by 22.5% in the area directly impacted by flooding. A subsequent major bleaching event during September 2014 caused extensive coral bleaching and mortality throughout the bay and further reduced coral cover in the freshwater kill area by 60.0%. The high temperature bleaching event only caused a 1.0% reduction in live coral throughout the portion of the bay not directly impacted by the freshwater event. Thus, the combined impact of the low salinity event and the thermal bleaching event appears to be more than simply additive. The temperature regime during the September 2014 bleaching event was analogous in duration and intensity to that of the large bleaching event that occurred previously during August 1996, but resulted in a much larger area of bleaching and coral mortality. Apparently seasonal timing as well as duration and magnitude of heating is important. Coral spawning in the dominant coral species occurs early in the summer, so reservoirs of stored lipid in the corals had been depleted by spawning prior to the September 2014 event. Warm months above 27 °C result in lower coral growth and presumably could further decrease lipid reserves, leading to a bleaching event that was more severe than would have happened if the high temperatures occurred earlier in the summer. Hawaiian reef corals decrease skeletal growth at temperatures above 27 °C, so perhaps the “stress period” actually started long before the bleaching threshold of 29 °C was reached. Hawaiʻi is directly influenced by the PDO which may become a factor influencing bleaching events in subtropical Hawaiʻi in much the same manner as variations in the El Niño Southern Oscillation (ENSO) influences bleaching events at low latitudes in the tropical Pacific. Records show that offshore temperatures measured by satellite will not always predict inshore bleaching because other factors (high cloud cover, high wind and wave action, tidal exchange rate) can limit inshore heating and prevent temperatures in the bay from reaching the bleaching threshold. Low light levels due to cloud cover or high turbidity can also serve to prevent bleaching

    Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Molokaʻi, Hawaiʻi

    No full text
    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1 (offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance

    Comparison of methods used to estimate coral cover in the Hawaiian Islands

    No full text
    Nine coral survey methods were compared at ten sites in various reef habitats with different levels of coral cover in Kāne‘ohe Bay, O’ahu, Hawaiʻi. Mean estimated coverage at the different sites ranged from less than 10% cover to greater than 90% cover. The methods evaluated include line transects, various visual and photographic belt transects, video transects and visual estimates. At each site 25 m transect lines were laid out and secured. Observers skilled in each method measured coral cover at each site. The time required to run each transect, time required to process data and time to record the results were documented. Cost of hardware and software for each method was also tabulated. Results of this investigation indicate that all of the methods used provide a good first estimate of coral cover on a reef. However, there were differences between the methods in detecting the number of coral species. For example, the classic “quadrat” method allows close examination of small and cryptic coral species that are not detected by other methods such as the “towboard” surveys. The time, effort and cost involved with each method varied widely, and the suitability of each method for answering particular research questions in various environments was evaluated. Results of this study support the finding of three other comparison method studies conducted at various geographic locations throughout the world. Thus, coral cover measured by different methods can be legitimately combined or compared in many situations. The success of a recent modeling effort based on coral cover data consisting of observations taken in Hawai‘i using the different methods supports this conclusion
    corecore