2,718 research outputs found
Stellar Substructures around the Hercules Dwarf Spheroidal Galaxy
We present deep -band DECam stellar photometry of the Hercules Milky Way
satellite galaxy, and its surrounding field, out to a radial distance of 5.4
times the tidal radius. We have identified nine extended stellar substructures
associated with the dwarf; preferentially distributed along the major axis of
the galaxy. Two significant over-densities lie outside the 95\% confidence band
for the likely orbital path of the galaxy and appear to be free-floating tidal
debris. We estimate the luminosity of the new stellar substructures, and find
that approximately the same amount of stellar flux is lying in these extended
structures as inside the main body of Hercules. We also analyse the
distribution of candidate blue-horizontal-branch stars and find agreement with
the alignment of the substructures at a confidence level greater than 98\%. Our
analysis provides a quantitative demonstration that Hercules is a strongly
tidally disrupted system, with noticeable stellar features at least 1.9 kpc
away from the galaxy.Comment: 13 pages, 13 figures, accepted for publication in Ap
Role of aberrant PI3K pathway activation in gallbladder tumorigenesis
The PI3K/AKT pathway governs a plethora of cellular processes, including cell growth, proliferation, and metabolism, in response to growth factors and cytokines. By acting as a unique lipid phosphatase converting phosphatidylinositol-3,4,5,-trisphosphate (PIP3) to phosphatidylinositol-4,5,-bisphosphate (PIP2), phosphatase and tensin homolog (PTEN) acts as the major cellular suppressor of PI3K signaling and AKT activation. Recently, PI3K mutations and loss/mutation of PTEN have been characterized in human gallbladder tumors; whether aberrant PTEN/PI3K pathway plays a causal role in gallbladder carcinogenesis, however, remains unknown. Herein we show that in mice, deregulation of PI3K/AKT signaling is sufficient to transform gallbladder epithelial cells and trigger fully penetrant, highly proliferative gallbladder tumors characterized by high levels of phospho-AKT. Histopathologically, these mouse tumors faithfully resemble human adenomatous gallbladder lesions. The identification of PI3K pathway deregulation as both an early event in the neoplastic transformation of the gallbladder epithelium and a main mechanism of tumor growth in Pten heterozygous and Pten mutant mouse models provides a new framework for studying in vivo the efficacy of target therapies directed against the PI3K pathway, as advanced metastatic tumors are often addicted to “trunkular” mutations
Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states
Jaynes' information theory formalism of statistical mechanics is applied to
the stationary states of open, non-equilibrium systems. The key result is the
construction of the probability distribution for the underlying microscopic
phase space trajectories. Three consequences of this result are then derived :
the fluctuation theorem, the principle of maximum entropy production, and the
emergence of self-organized criticality for flux-driven systems in the
slowly-driven limit. The accumulating empirical evidence for these results
lends support to Jaynes' formalism as a common predictive framework for
equilibrium and non-equilibrium statistical mechanics.Comment: 21 pages, 0 figures, minor modifications, version to appear in J.
Phys. A. (2003
Repair of endogenous DNA base lesions modulate lifespan in mice
The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O[superscript 6]-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm[superscript −/−] mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.National Institutes of Health (U.S.) (Grant R01-CA075576)National Institutes of Health (U.S.) (Grant R01-ES022872)National Institutes of Health (U.S.) (Grant R01-CA149261)National Institutes of Health (U.S.) (Grant P30-ES002109
Temporal Stream Logic: Synthesis beyond the Bools
Reactive systems that operate in environments with complex data, such as
mobile apps or embedded controllers with many sensors, are difficult to
synthesize. Synthesis tools usually fail for such systems because the state
space resulting from the discretization of the data is too large. We introduce
TSL, a new temporal logic that separates control and data. We provide a
CEGAR-based synthesis approach for the construction of implementations that are
guaranteed to satisfy a TSL specification for all possible instantiations of
the data processing functions. TSL provides an attractive trade-off for
synthesis. On the one hand, synthesis from TSL, unlike synthesis from standard
temporal logics, is undecidable in general. On the other hand, however,
synthesis from TSL is scalable, because it is independent of the complexity of
the handled data. Among other benchmarks, we have successfully synthesized a
music player Android app and a controller for an autonomous vehicle in the Open
Race Car Simulator (TORCS.
Using legume-based mixtures to enhance the nitrogen use efficiency and economic viability of cropping systems - Final report (LK09106/HGCA3447)
As costs for mineral fertilisers rise, legume-based leys are recognised as a potential alternative nitrogen source for crops. Here we demonstrate that including species-rich legume-based leys in rotations helps to maximise synergies between agricultural productivity and other ecosystem services. By using functionally diverse plant species mixtures, these services can be optimised and fine-tuned to regional and farm-specific needs. Replicated field experiments were conducted over three years at multiple locations, testing the performance of 12 legume species and 4 grass species sown in monocultures, as well as in a mixture of 10 of the legumes and all 4 grasses (called the All Species Mix, ASM). In addition, we compared this complex mixture to farmer-chosen ley mixtures on 34 sites across the UK.
The trials showed that there is a large degree of functional complementarity among the legume species. No single species scored high on all evaluation criteria. In particular, the currently most frequently used species, white clover, is outscored by other legume species on a number of parameters such as early development and resistance to decomposition. Further complementarity emerged from the different responses of legume species to environmental variables, with soil pH and grazing or cutting regime being among the more important factors. For example, while large birdsfoot trefoil showed better performance on more acidic soils, the opposite was true for sainfoin, lucerne and black medic. In comparison with the monocultures, the ASM showed increased ground cover, increased above-ground biomass and reduced weed biomass. Benefits of mixing species with regard to productivity increased over time. In addition, the stability of biomass production across sites was greater in the ASM than in the legume monocultures. Within the on-farm trials, we further found that on soils low in organic matter the biomass advantage of the ASM over the Control ley was more marked than on the soils with higher organic matter content. Ecological modelling revealed that the three best multifunctional mixtures all contained black medic, lucerne and red clover.
Within the long term New Farming Systems (NFS) rotational study, the use of a clover bi-crop showed improvement to soil characteristics compared to current practice (e.g. bulk density and water infiltration rate). Improvements in wheat yield were also noted with respect to the inclusion of a clover bi-crop in 2010, but there was evidence of a decline in response as the N dose was increased. Cumulatively, over both the wheat crop and the spring oilseed rape crop, the clover bi-crop improved margin over N. The highest average yield response (~9%) was associated with the ASM legume species mix cover cropping approach
- …
