29 research outputs found

    Abnormalities in brain structure and behavior in GSK-3alpha mutant mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3α KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis.</p> <p>Results</p> <p>Similar to the previously described behaviours of GSK-3β<sup>+/-</sup>mice, GSK-3α mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells.</p> <p>Conclusion</p> <p>Taken together, these data support a role for the GSK-3α gene in CNS functioning and possible involvement in the development of psychiatric disorders.</p

    GTOSat: Radiation Belt Dynamics from the Inside

    Get PDF
    GTOSat, a 6U SmallSat integrated and tested at NASA Goddard Space Flight Center (GSFC), has a scheduled launch date of July 31st, 2022, on an Atlas V. From a low inclination geosynchronous transfer orbit (GTO), GTOSat has the primary science goal of advancing our quantitative understanding of acceleration and loss of relativistic electrons in the Earth’s outer radiation belt. It will measure energy spectra and pitch angles of both the seed and the energized electron populations simultaneously using a compact, high-heritage Relativistic Electron Magnetic Spectrometer (REMS) built by The Aerospace Corporation. A boom-mounted Fluxgate Magnetometer (FMAG), developed by NASA GSFC, will provide 3-axis knowledge of the ambient local magnetic field. The spacecraft bus uses a combination of commercial and in-house/custom designed components. Design, integration, and testing of the spacecraft bus was performed by a small, dedicated team at GSFC. Throughout development GTOSat has encountered numerous challenges, expected and unexpected, that we’re ready to share with the community

    Retreatment for hepatitis C virus direct-acting antiviral therapy virological failure in primary and tertiary settings: The REACH-C cohort

    Full text link
    Virological failure occurs in a small proportion of people treated for hepatitis C virus (HCV) with direct-acting antiviral (DAA) therapies. This study assessed retreatment for virological failure in a large real-world cohort. REACH-C is an Australian observational study (n = 10,843) evaluating treatment outcomes of sequential DAA initiations across 33 health services between March 2016 to June 2019. Virological failure retreatment data were collected until October 2020. Of 408 people with virological failure (81% male; median age 53; 38% cirrhosis; 56% genotype 3), 213 (54%) were retreated once; 15 were retreated twice. A range of genotype specific and pangenotypic DAAs were used to retreat virological failure in primary (n = 56) and tertiary (n = 157) settings. Following sofosbuvir/velpatasvir/voxilaprevir availability in 2019, the proportion retreated in primary care increased from 21% to 40% and median time to retreatment initiation declined from 294 to 152 days. Per protocol (PP) sustained virological response (SVR12) was similar for people retreated in primary and tertiary settings (80% vs 81%; p = 1.000). In regression analysis, sofosbuvir/velpatasvir/voxilaprevir (vs. other regimens) significantly decreased likelihood of second virological failure (PP SVR12 88% vs. 77%; adjusted odds ratio [AOR] 0.29; 95%CI 0.11–0.81); cirrhosis increased likelihood (PP SVR12 69% vs. 91%; AOR 4.26; 95%CI 1.64–11.09). Indigenous Australians had lower likelihood of retreatment initiation (AOR 0.36; 95%CI 0.15–0.81). Treatment setting and prescriber type were not associated with retreatment initiation or outcome. Virological failure can be effectively retreated in primary care. Expanded access to simplified retreatment regimens through decentralized models may increase retreatment uptake and reduce HCV-related mortality

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    The acidic domain of the hepatitis C virus NS4A protein is required for viral assembly and envelopment through interactions with the viral E1 glycoprotein.

    No full text
    Hepatitis C virus (HCV) assembly and envelopment are coordinated by a complex protein interaction network that includes most of the viral structural and nonstructural proteins. While the nonstructural protein 4A (NS4A) is known to be important for viral particle production, the specific function of NS4A in this process is not well understood. We performed mutagenesis of the C-terminal acidic domain of NS4A and found that mutation of several of these amino acids prevented the formation of the viral envelope, and therefore the production of infectious virions, without affecting viral RNA replication. In an overexpression system, we found that NS4A interacted with several viral proteins known to coordinate envelopment, including the viral E1 glycoprotein. One of the NS4A C-terminal mutations, Y45F, disrupted the interaction of NS4A with E1. Specifically, NS4A interacted with the first hydrophobic region of E1, a region previously described as regulating viral particle production. Indeed, we found that an E1 mutation in this region, D72A, also disrupted the interaction of NS4A with E1. Supernatants from HCV NS4A Y45F transfected cells had significantly reduced levels of HCV RNA, however they contained equivalent levels of Core protein. Interestingly, the Core protein secreted from these cells formed high order oligomers with a density matching the infectious virus secreted from wild-type cells. These results suggest that this Y45F mutation in NS4A causes secretion of low-density Core particles lacking genomic HCV RNA. These results corroborate previous findings showing that the E1 D72A mutation also causes secretion of Core complexes lacking genomic HCV RNA, and therefore suggest that the interaction between NS4A and E1 is involved in the incorporation of viral RNA into infectious HCV particles. Our findings define a new role for NS4A in the HCV lifecycle and help elucidate the protein interactions necessary for production of infectious virus
    corecore