4 research outputs found

    Deciphering the Origin of Interface-Induced High Li and Na Ion Conductivity in Nanocomposite Solid Electrolytes Using X-Ray Raman Spectroscopy

    Get PDF
    Solid-state electrolytes (SSEs) with high ionic conductivities are crucial for safer and high-capacity batteries. Interface effects in nanocomposites of SSEs and insulators can lead to profound increases in conductivity. Understanding the composition of the interface is crucial for tuning the conductivity of composite solid electrolytes. Herein, X-ray Raman Scattering (XRS) spectroscopy is used for the first time to unravel the nature of the interface effects responsible for conductivity enhancements in nanocomposites of complex hydride-based electrolytes (LiBH4, NaBH4, and NaNH2) and oxides. XRS probe of the Li, Na, and B local environments reveals that the interface consists of highly distorted/defected and structurally distinct phase(s) compared to the original compounds. Interestingly, nanocomposites with higher concentrations of the interface compounds exhibit higher conductivities. Clear differences are observed in the interface composition of SiO2- and Al2O3-based nanocomposites, attributed to differences in the reactivity of their surface groups. These results demonstrate that interfacial reactions play a dominant role in conductivity enhancement in composite solid electrolytes. This work showcases the potential of XRS in investigating interface interactions, providing valuable insights into the often complex ion conductor/insulator interfaces, especially for systems containing light elements such as Li, B, and Na present in most SSEs and batteries

    A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development

    Get PDF
    An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates

    Deciphering the Origin of Interface‐Induced High Li and Na Ion Conductivity in Nanocomposite Solid Electrolytes Using X‐Ray Raman Spectroscopy

    No full text
    Solid-state electrolytes (SSEs) with high ionic conductivities are crucial for safer and high-capacity batteries. Interface effects in nanocomposites of SSEs and insulators can lead to profound increases in conductivity. Understanding the composition of the interface is crucial for tuning the conductivity of composite solid electrolytes. Herein, X-ray Raman Scattering (XRS) spectroscopy is used for the first time to unravel the nature of the interface effects responsible for conductivity enhancements in nanocomposites of complex hydride-based electrolytes (LiBH4_4, NaBH4_4, and NaNH2_2) and oxides. XRS probe of the Li, Na, and B local environments reveals that the interface consists of highly distorted/defected and structurally distinct phase(s) compared to the original compounds. Interestingly, nanocomposites with higher concentrations of the interface compounds exhibit higher conductivities. Clear differences are observed in the interface composition of SiO2_2- and Al2_2O3_3-based nanocomposites, attributed to differences in the reactivity of their surface groups. These results demonstrate that interfacial reactions play a dominant role in conductivity enhancement in composite solid electrolytes. This work showcases the potential of XRS in investigating interface interactions, providing valuable insights into the often complex ion conductor/insulator interfaces, especially for systems containing light elements such as Li, B, and Na present in most SSEs and batteries
    corecore