30 research outputs found

    The high risk HPV16 L2 minor capsid protein has multiple transport signals that mediate its nucleocytoplasmic traffic

    Get PDF
    AbstractIn this study we examined the transport signals contributing to HPV16 L2 nucleocytoplasmic traffic using confocal microscopy analysis of enhanced green fluorescent protein—L2 (EGFP-L2) fusions expressed in HeLa cells. We confirmed that both nuclear localization signals (NLSs), the nNLS (1MRHKRSAKRTKR12) and cNLS (456RKRRKR461), previously characterized in vitro (Darshan et al., 2004), function independently in vivo. We discovered that a middle region rich in arginine residues (296SRRTGIRYSRIGNKQTLRTRS316) functions as a nuclear retention sequence (NRS), as mutagenesis of critical arginine residues within this NRS reduced the fraction of L2 in the nucleus despite the presence of both NLSs. Significantly, the infectivity of HPV16 pseudoviruses containing either RR297AA or RR297EE within the L2 NRS was strongly reduced both in HaCaT cells and in a murine challenge model. Experiments using Ratjadone A nuclear export inhibitor and mutation-localization analysis lead to the discovery of a leucine-rich nuclear export signal (462LPYFFSDVSL) mediating 16L2 nuclear export. These data indicate that HPV16 L2 nucleocytoplasmic traffic is dependent on multiple functional transport signals

    Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2

    Get PDF
    AbstractVaccination with papillomavirus L2 has been shown to induce neutralizing antibodies that protect against homologous type infection and cross-neutralize a limited number of genital HPVs. Surprisingly, we found that antibodies to bovine papillomavirus (BPV1) L2 amino acids 1–88 induced similar titers of neutralizing antibodies against Human papillomavirus (HPV)16 and 18 and BPV1 pseudoviruses and also neutralized HPV11 native virions. These antibodies also neutralized each of the other pseudovirus types tested, HPV31, HPV6 and Cottontail rabbit papillomavirus (CRPV) pseudoviruses, albeit with lower titers. HPV16, HPV18, HPV31, HPV6 and CRPV L2 anti-sera also displayed some cross-neutralization, but the titers were lower and did not encompass all pseudoviruses tested. This study demonstrates the presence of broadly cross-neutralizing epitopes at the N-terminus of L2 that are shared by cutaneous and mucosal types and by types that infect divergent species. BPV1 L2 was exceptionally effective at inducing cross-neutralizing antibodies to these shared epitopes

    Progress in L2-Based Prophylactic Vaccine Development for Protection against Diverse Human Papillomavirus Genotypes and Associated Diseases

    No full text
    The human papillomaviruses (HPVs) are a family of small DNA tumor viruses including over 200 genotypes classified by phylogeny into several genera. Different genera of HPVs cause ano-genital and oropharyngeal cancers, skin cancers, as well as benign diseases including skin and genital warts. Licensed vaccines composed of L1 virus-like particles (VLPs) confer protection generally restricted to the ≤9 HPV types targeted. Here, we examine approaches aimed at broadening the protection against diverse HPV types by targeting conserved epitopes of the minor capsid protein, L2. Compared to L1 VLP, L2 is less immunogenic. However, with appropriate presentation to the immune system, L2 can elicit durable, broadly cross-neutralizing antibody responses and protection against skin and genital challenge with diverse HPV types. Such approaches to enhance the strength and breadth of the humoral response include the display of L2 peptides on VLPs or viral capsids, bacteria, thioredoxin and other platforms for multimerization. Neither L2 nor L1 vaccinations elicit a therapeutic response. However, fusion of L2 with early viral antigens has the potential to elicit both prophylactic and therapeutic immunity. This review of cross-protective HPV vaccines based on L2 is timely as several candidates have recently entered early-phase clinical trials

    Murine skin and vaginal mucosa are similarly susceptible to infection by pseudovirions of different papillomavirus classifications and species

    Get PDF
    AbstractDepending upon viral genotype, productive papillomavirus infection and disease display preferential tropism for cutaneous or mucosal stratified squamous epithelia, although the mechanisms are unclear. To investigate papillomavirus entry tropism, we used reporter pseudovirions based on various cutaneous and mucosal papillomavirus species, including the recently identified murine papillomavirus. Pseudovirus transduction of BALB/c mice was examined using an improved murine skin infection protocol and a previously developed cervicovaginal challenge model. In the skin, HPV5, HPV6, HPV16, BPV1 and MusPV1 pseudovirions preferentially transduced keratinocytes at sites of trauma, similar to the genital tract. Skin infection, visualized by in vivo imaging using a luciferase reporter gene, peaked between days 2–3 and rapidly diminished for all pseudovirion types. Murine cutaneous and genital tissues were similarily permissive for pseudovirions of HPV types 5, 6, 8, 16, 18, 26, 44, 45, 51, 58 and animal papillomaviruses BPV1 and MusPV1, implying that papillomavirus' tissue and host tropism is governed primarily by post-entry regulatory events in the mouse

    Durable immunity to oncogenic human papillomaviruses elicited by adjuvanted recombinant Adeno-associated virus-like particle immunogen displaying L2 17–36 epitopes

    No full text
    Vaccination with the minor capsid protein L2, notably the 17–36 neutralizing epitope, induces broadly protective antibodies, although the neutralizing titers attained in serum are substantially lower than for the licensed L1 VLP vaccines. Here we examine the impact of other less reactogenic adjuvants upon the induction of durable neutralizing serum antibody responses and protective immunity after vaccination with HPV16 and HPV31 L2 amino acids 17–36 inserted at positions 587 and 453 of VP3, respectively, for surface display on Adeno-Associated Virus 2-like particles [AAVLP (HPV16/31L2)]. Mice were vaccinated three times subcutaneously with AAVLP (HPV16/31L2) at two week intervals at several doses either alone or formulated with alum, alum and MPL, RIBI adjuvant or Cervarix. The use of adjuvant with AAVLP (HPV16/31L2) was necessary in mice for the induction of L2-specific neutralizing antibody and protection against vaginal challenge with HPV16. While use of alum was sufficient to elicit durable protection (>3 months after the final immunization), antibody titers were increased by addition of MPL and RIBI adjuvants. To determine the breadth of immunity, rabbits were immunized three times with AAVLP (HPV16/31L2) either alone, formulated with alum±MPL, or RIBI adjuvants, and after serum collection, the animals were concurrently challenged with HPV16/31/35/39/45/58/59 quasivirions or cottontail rabbit papillomavirus (CRPV) at 6 or 12 months post-immunization. Strong protection against all HPV types was observed at both 6 and 12 months post-immunization, including robust protection in rabbits receiving the vaccine without adjuvant. In summary, vaccination with AAVLP presenting HPV L2 17–36 epitopes at two sites on their surface induced cross-neutralizing serum antibody, immunity against HPV16 in the genital tract, and long-term protection against skin challenge with the 7 most common oncogenic HPV types when using a clinically relevant adjuvant.Medigene AG to NDC and RBSR, and Public Health Service (grants.nih.gov) grants P50 CA098252 and CA118790 to RBSR
    corecore