30 research outputs found
Correlation of the 4977 bp mitochondrial DNA deletion with human sperm dysfunction
Background. Several studies have examined the association between mitochondrial DNA (mtDNA) deletions, in particular the "common" 4977-bp deletion, and human sperm dysfunction, but have produced contradictory results. Findings. Here we show that PCR slippage and primer miss-match to nuclear DNA may lead to overestimates in the frequency of deletions. Our investigation resolves this issue and gives strong negative correlation between the proportion of the "common" deletion and sperm motility. Furthermore, for the first time, we present data which reinforce the hypothesis for a negative correlation between the mtDNA "common" deletion and fertilization efficiency of spermatozoa. Conclusion. The present analysis resolves several literature inconsistencies and opens the way for diagnostic use of the "common" deletion as a molecular indicator of sperm fertility potential. © 2009 Rodakis et al
Three copies of the early gene 6F6 are interspersed in and around the late chorion gene cluster of Bombyx mori
The developmentally regulated chorion genes of the silkmoth, Bombyx mori, are clustered in two genetic loci (Chl-2 and Ch3) of chromosome 2, which are separated by approximately 4 centiMorgans. Early genes are clustered in chorion locus Ch3, whereas Ch l-2 contains all of the late genes in a continuous region of 140 kb, which is sandwiched between two regions containing most of the middle chorion genes. The late-gene area has been extensively studied and was considered to contain only late genes coding for chorion proteins of exceptionally high cysteine content organized in tightly clustered α/β gene pairs. In the present paper we report the unexpected presence of three dispersed copies (6F6.1, 6F6.2, 6F6.3) of an early β-gene, which disrupts the continuity of the late locus. Hybridization data indicate that 6F6.2 corresponds to the previously characterized m6F6 cDNA clone and that 6F6.1 and 6F6.3, but not 6F6.2, are adjacent to α-type genes. Determination of the complete sequence of 6F6.1 and of the major exon of the A-gene near it shows that these two genes have a convergent rather than a divergent direction of transcription and thus do not constitute a typical gene pair. The sequence data further suggest that 6F6.1 is transcriptionally active. The three dispersed 6F6 gene copies are localized at points of inversion of the polarity of neighboring gene pairs and their locations in this locus indicate complex gene rearrangement events. © 1992, Springer-Verlag New York Inc. All rights reserved
The possible evolutionary significance of repeat elements near and within an early chorion gene in the late chorion locus of Bombyx mori
Three β-type early chorion gene copies (6F76.1, 6F76.2, and 6F76.3) are dispersed in the late region of chorion locus Chl-2. Detailed analysis of the 5′-flanking region and the intron of 6176.1 shows that they contain sequences that are homologous to Bombyx mori Bm l repeat elements. Interestingly, the Bm l -type segment of the intron is interrupted by the insertion of a sequence that shows significant similarities with part of an intron of B. mori and Bombyx mandarina fibroin genes, and with part of the 3′-flanking region of B. mori prothoracicotropic hormone and tRNA-Glu genes; this sequence may represent a new repetitive, possibly transposable, element of B. mori. Following the Bm1-homologous sequence of the 6176.1 5′-flanking region and preceding the gene promoter region, a short DNA segment shows sequence motifs that are also present in the ErA.1 promoter region. The occurrence of these sequences near one end or within the Bm1 repeat element is suggestive of complex sequence transfer events. Comparative analysis of known B. mori chorion α-gene promoters and of Bm1 repeat elements suggests, with marginal statistical significance, that these two sets of sequences contain common elements. © 1992, Springer-Verlag New York Inc. All rights reserved
Three copies of the early gene 6F6 are interspersed in and around the late chorion gene cluster of Bombyx mori
The developmentally regulated chorion genes of the silkmoth, Bombyx mori, are clustered in two genetic loci (Chl-2 and Ch3) of chromosome 2, which are separated by approximately 4 centiMorgans. Early genes are clustered in chorion locus Ch3, whereas Ch l-2 contains all of the late genes in a continuous region of 140 kb, which is sandwiched between two regions containing most of the middle chorion genes. The late-gene area has been extensively studied and was considered to contain only late genes coding for chorion proteins of exceptionally high cysteine content organized in tightly clustered α/β gene pairs. In the present paper we report the unexpected presence of three dispersed copies (6F6.1, 6F6.2, 6F6.3) of an early β-gene, which disrupts the continuity of the late locus. Hybridization data indicate that 6F6.2 corresponds to the previously characterized m6F6 cDNA clone and that 6F6.1 and 6F6.3, but not 6F6.2, are adjacent to α-type genes. Determination of the complete sequence of 6F6.1 and of the major exon of the A-gene near it shows that these two genes have a convergent rather than a divergent direction of transcription and thus do not constitute a typical gene pair. The sequence data further suggest that 6F6.1 is transcriptionally active. The three dispersed 6F6 gene copies are localized at points of inversion of the polarity of neighboring gene pairs and their locations in this locus indicate complex gene rearrangement events. © 1992, Springer-Verlag New York Inc. All rights reserved
Doubly Uniparental Inheritance of mtDNA: An Unappreciated Defiance of a General Rule
We recount the basic observations about doubly uniparental inheritance (DUI) of mtDNA in bivalvian mollusks with an emphasis on those that were obtained from work in Mytilus and appeared after the review by Zouros (Evol Biol 40:1–31, 2013). Using this information, we present a new model about DUI that is a revised version of previously suggested models. The model can be summarized as follows. A Mytilus female either provides its eggs with the “masculinizing” factor S and the “sperm mitochondria binding” factor Z, or it does not. This property of the female is determined by two nuclear genes, S and Z, that are always in the on/on or the off/off phase. In fertilized eggs without factors S and Z the embryo develops into a female and the sperm mitochondria are randomly dispersed among cells following development. In fertilized eggs with factors S and Z, the first factor causes the cell to become eventually sperm and the second causes the sperm mitochondria to aggregate and anchor to the nuclear membrane by binding to a specific motif of the sperm-derived mtDNA. Factors S and Z are continuously co-synthesized and co-localized in the cell line from the egg to the sperm. The sperm mitochondria of the aggregate escape the mechanism that eliminates the cell’s mitochondria before the formation of the sperm. The rescued mitochondria are subsequently packed into five mega-mitochondria in the sperm and are delivered in the egg. © 2019, Springer Nature Switzerland AG
The atypical presence of the paternal mitochondrial DNA in somatic tissues of male and female individuals of the blue mussel species Mytilus galloprovincialis
Background. In animals mtDNA inheritance is maternal except in certain molluscan bivalve species which have a paternally inherited mitochondrial genome (genome M) along with the standard maternal one (genome F). Normally, the paternal genome occurs in the male gonad, but it can be often found, as a minority, in somatic tissues of males and females. This may happen in two ways. One is through "sperm mtDNA leakage" into somatic tissues, a deviation from the normal situation in which the sperm mtDNA vanishes in females or ends up exclusively in the germ line of males. The other is through "egg heteroplasmy", when the egg contains, in small quantities, the paternal genome in addition to maternal genome. Findings. To test the two hypotheses, we compared the sequences of one of the most variable domains of the M molecule in a somatic tissue (foot) and in the sperm of ten male and in the foot of ten female individuals of M. galloprovincialis. Presence of the M genome was rarer in the foot of females than males. The M genome in the sperm and in the foot of males was identical. Conclusions. Given that the surveyed region differs from individual to individual, the identity of the M genome in the foot and the sperm of males supports strongly the hypothesis that, at least for the tissue examined, the presence of the M genome is due to sperm mtDNA leakage. © 2010 Rodakis et al; licensee BioMed Central Ltd
Sequence analysis of a small early chorion gene subfamily interspersed within the late gene locus in Bombyx mori
A comprehensive sequence analysis of three early chorion genes (6F6.1, 6F6.2, 6F6.3) which form a small subfamily is presented. Two main features characterize this subfamily: (1) the 6F6 gene copies are β-branch genes and, unlike typical chorion genes which are organized in divergent gene pairs, they are unpaired, and (2) they are not clustered in genetic locus Ch3 but are dispersed in Ch1-2, which is about 3 to 4 centiMorgans away and contains middle and late chorion genes. Sequence comparisons show that members of this subfamily exhibit high identity values in their major coding region (94–96%) and that similarities also extend, but to a lesser degree, into their noncoding regions. The putative 6F6 promoter regions have no significant similarities with the corresponding regions of other early β-genes but quite surprisingly share common elements with middle and late genes. The main difference among the 6F6 gene introns is the presence of inserted sequences: the insert into 6F6.2 (“IR”; 248 bp) is flanked by a 102–103-bp inverted repeat, while those into 6F6.1 (“FIB”; 184 bp) and 6F6.3 (“HOPE”; 951 bp) are carried by a partial Bm1 element. HOPE has features of a non-LTR retrotransposable element. Preliminary experiments indicate that the copy number of IR and HOPE in the Bombyx mori genome is about 5,000 and 20,000, respectively. The great similarity of 6F6 genes cannot be accounted for by selective pressure but rather appears to be the result of gene-conversion-like events, which are supposed to operate frequently in middle and late chorion genes but not in other known early β-genes. Using the relative position and orientation of the 6F6 gene copies, it is possible to propose an evolutionary scheme for the formation of chorion locus Ch1-2. © 1995, Springer-Verlag New York Inc. All rights reserved
Novel features of metazoan mtDNA revealed from sequence analysis of three mitochondrial DNA segments of the land snail Albinaria turrita (Gastropoda: Clausiliidae)
The mitochondrial DNA (mtDNA) size of the terrestrial gastropod Albinaria turrita was determined by restriction enzyme mapping and found to be approximately 14.5 kb. Its partial gene content and organization were examined by sequencing three cloned segments representing about one-fourth of the mtDNA molecule. Complete sequences of cytochrome c oxidase subunit II (COII), and ATPase subunit 8 (ATPase8), as well as partial sequences of cytochrome c oxidase subunit I (COI), NADH dehydrogenase subunit 6 (ND6), and the large ribosomal RNA (IrRNA) genes were determined. Nine putative tRNA genes were also identified by their ability to conform to typical mitochondrial tRNA secondary structures. An 82-nt sequence resembles a noncoding region of the bivalve Mytilus edulis, even though it might contain a tenth tRNA gene with an unusual 5-nt overlap with another tRNA gene. The genetic code of Albinaria turrita appears to be the same as that of Drosophila and Mytilus edulis. The structures of COI and COII are conservative, but those of ATPase8 and ND6 are diversified. The sequenced portion of thelrRNA gene (1,079 nt) is characterized by conspicuous deletions in the 5′ and 3′ ends; this gene represents the smallest coelomate IrRNA gene so far known. Sequence comparisons of the identified genes indicate that there is greater difference between Albinaria and Mytilus than between Albinaria and Drosophila. An evolutionary analysis, based on COII sequences, suggests a possible nonmonophyletic origin of molluskan mtDNA. This is supported also by the absence of the ATPase8 gene in the mtDNA of Mytilus and nematodes, while this gene is present in the mtDNA of Albinaria and Cepaea nemoralis and in all other known coelomate metazoan mtDNAs. © 1994, Springer-Verlag New York Inc. All rights reserved
