269 research outputs found
Cancer treatment in childhood and testicular function : the importance of the somatic environment
Testicular function and future fertility may be affected by cancer treatment during childhood. Whilst survival of the germ (stem) cells is critical for ensuring the potential for fertility in these patients, the somatic cell populations also play a crucial role in providing a suitable environment to support germ cell maintenance and subsequent development. Regulation of the spermatogonial germ-stem cell niche involves many signalling pathways with hormonal influence from the hypothalamo-pituitary-gonadal axis. In this review, we describe the somatic cell populations that comprise the testicular germ-stem cell niche in humans and how they may be affected by cancer treatment during childhood. We also discuss the experimental models that may be utilized to manipulate the somatic environment and report the results of studies that investigate the potential role of somatic cells in the protection of the germ cells in the testis from cancer treatment.Peer reviewe
Perinatal germ cell development and differentiation in the male marmoset (Callithrix jacchus):similarities with the human and differences from the rat
STUDY QUESTION: Is perinatal germ cell (GC) differentiation in the marmoset similar to that in the human? SUMMARY ANSWER: In a process comparable with the human, marmoset GC differentiate rapidly after birth, losing OCT4 expression after 5–7 weeks of age during mini-puberty. WHAT IS KNOWN ALREADY: Most of our understanding about perinatal GC development derives from rodents, in which all gonocytes (undifferentiated GC) co-ordinately lose expression of the pluripotency factor OCT4 and stop proliferating in late gestation. Then after birth these differentiated GC migrate to the basal lamina and resume proliferation prior to the onset of spermatogenesis. In humans, fetal GC differentiation occurs gradually and asynchronously and OCT4(+) GC persist into perinatal life. Failure to switch off OCT4 in GC perinatally can lead to development of carcinoma in situ (CIS), the precursor of testicular germ cell cancer (TGCC), for which there is no animal model. Marmosets show similarities to the human, but systematic evaluation of perinatal GC development in this species is lacking. Similarity, especially for loss of OCT4 expression, would support use of the marmoset as a model for the human and for studying CIS origins. STUDY DESIGN, SIZE AND DURATION: Testis tissues were obtained from marmosets (n = 4–10 per age) at 12–17 weeks' gestation and post-natal weeks 0.5, 2.5, 5–7, 14 and 22 weeks, humans at 15–18 weeks' gestation (n = 5) and 4–5 weeks of age (n = 4) and rats at embryonic day 21.5 (e21.5) (n = 3) and post-natal days 4, 6 and 8 (n = 4 each). PARTICIPANTS/MATERIALS, SETTING AND METHODS: Testis sections from fetal and post-natal marmosets, humans and rats were collected and immunostained for OCT4 and VASA to identify undifferentiated and differentiated GC, respectively, and for Ki67, to identify proliferating GC. Stereological quantification of GC numbers, differentiation (% OCT4(+) GC) and proliferation were performed in perinatal marmosets and humans. Quantification of GC position within seminiferous cords was performed in marmosets, humans and rats. MAIN RESULTS AND ROLE OF CHANCE: The total GC number increased 17-fold from birth to 22 post-natal weeks in marmosets; OCT4(+) and VASA(+) GC proliferated equally in late gestation and early post-natal life. The percentage of OCT4(+) GC fell from 54% in late fetal life to <0.5% at 2.5 weeks of age and none were detected after 5–7 weeks in marmosets. In humans, the percentage of OCT4(+) GC also declined markedly during the equivalent period. In marmosets, GC had begun migrating to the base of seminiferous cords at ∼22 weeks of age, after the loss of GC OCT4 expression. LIMITATIONS, REASONS FOR CAUTION: There is considerable individual variation between marmosets. Although GC development in marmosets and humans was similar, there are differences with respect to proliferation during fetal life. The number of human samples was limited. WIDER IMPLICATIONS OF THE FINDINGS: The similarities in testicular GC differentiation between marmosets and humans during the perinatal period, and their differences from rodents, suggest that the marmoset may be a useful model for studying the origins of CIS, with relevance for the study of TGCC. STUDY FUNDING/COMPETING INTERESTS: This work was supported by Grant G33253 from the Medical Research Council, UK. No external funding was sought and there are no competing interests
A fertile future: fertility preservation special series
Fertility preservation is a rapidly advancing field with numerous broad applications ranging from retaining the prospect of fertility in a child with cancer to protecting an entire species from extinction. In recent years, huge strides have been made in understanding the biology of male and female reproduction in animals and humans and using this knowledge to develop strategies for fertility preservation across a range of clinical and ecological applications. This Reproduction and Fertility preservation series is composed of articles from experts on this topic and these will highlight key developments in fertility preservation and also identify the challenges that still face this exciting and relatively new field
FERTILITY PRESERVATION: Testicular transplantation for fertility preservation: clinical potential and current challenges
Preservation of fertility in teenagers and young adults treated for haematological malignancies
Sex steroid priming for growth hormone stimulation testing in children and adolescents with short stature: A systematic review
The Transformative Impact of Extracellular Vesicles on Developing Sperm
Objective: To review the role of extracellular vesicles (EVs) released from the male reproductive tract and their impact on developing sperm. We discuss how sperm exiting the seminiferous tubules, although developmentally mature, require further modification. Acquisition of various functions including increased motility, transfer of cargoes and ability to undertake the acrosome reaction is mediated through the interaction between sperm and EVs.
Methods: A review of the literature identified that EVs are released from different portions of the male reproductive tract, notably the epididymis and prostate. These EVs interact with sperm as they pass from the seminiferous tubules to the epididymis and vas deferens prior to ejaculation.
Results: EVs are small lipid-bound particles carrying bespoke RNA, protein and lipid cargoes. These cargoes are loaded based on the state of the parent cell and are used to communicate with recipient cells. In sperm, these cargoes are essential for post-testicular modification.
Conclusions: Interactions between developing sperm and EVs are important for the subsequent function of sperm. Prior to ejaculation, these interactions confer important changes for the post-testicular modification and development of sperm. Little is known about the interaction between EVs from the testes and the spermatogonial stem cell niche or developing sperm within the seminiferous tubules. However, the numerous roles of EVs in the post-testicular modification of sperm have led many to suspect that they may also play important roles in developing sperm within the testes
Effects of exposure to acetaminophen and ibuprofen on fetal germ cell development in both sexes in rodent and human using multiple experimental systems
Extracellular vesicles in urological malignancies
Extracellular vesicles (EVs) are small lipid bound structures released from cells containing bioactive cargoes. Both the type of cargo and amount loaded varies compared to that of the parent cell. The characterisation of EVs in cancers of the male urogenital tract has identified several cargoes with promising diagnostic and disease monitoring potential. EVs released by cancers of the male urogenital tract promote cell-to-cell communication, migration, cancer progression and manipulate the immune system promoting metastasis by evading the immune response. Their use as diagnostic biomarkers represents a new area of screening and disease detection, potentially reducing the need for invasive biopsies. Many validated EV cargoes have been found to have superior sensitivity and specificity than current diagnostic tools currently in use. The use of EVs to improve disease monitoring and develop novel therapeutics will enable clinicians to individualise patient management in the exciting era of personalised medicine
- …
