10 research outputs found

    Water-dispersible nanocolloids and higher temperatures promote the release of carbon from riparian soil

    No full text
    Increasing temperatures in alpine regions accompanied by glacial retreat is occurring rapidly due to climate change. This may affect riparian soils by increasing weathering rates, resulting in greater organic carbon (OC) release to rivers via movement of iron-containing colloids and nanominerals. Increased concentrations of iron- or silcate-nanominerals would result in higher surface area for OC adsorption. To test the influence of temperature on OC leaching, we examined mineral weathering and nanocolloid facilitated release of OC through a series of controlled laboratory batch and column experiments using sediment from the banks of the Nisqually River, Mount Rainier in Washington State (USA). Additional experiments were conducted using the same sediments, but with an illite amendment added to test the influence of additional surface area and nanominerals that many sediments along the Nisqually River contain. These higher- and lower-surface-area sediments (i.e., sediments with and without the illite amendment) were incubated for 90 d at 4 or 20 degrees C, followed by batch and column OC leaching tests. Results show that OC leaching rates for 20 degrees C were two to three times greater than for 4 degrees C. Further, our results suggest that nanocolloids are responsible for moving this increased OC load from these sediments. When hydrologically connected, OC is released from bank sediments to rivers faster than presently anticipated in fluvial environments experiencing climate change-induced glacial retreat. Further, a one-dimensional, finite-element computational model developed for this study estimates that a 1 degrees C increase in temperature over a 90-d summer runoff period increases the OC release rate from sediments by 79%.11Ysciescopu

    Insights into the physical and chemical properties of a cement-polymer composite developed for geothermal wellbore applications

    No full text
    To isolate injection and production zones from overlying formations and aquifers during geothermal operations, cement is placed in the annulus between well casing and the formation. However, wellbore cement eventually undergoes fractures due to chemical and physical stress with the resulting time and cost intensive production shutdowns and repairs. To address this difficult problem, a polymer-cement (composite) with self-healing properties was recently developed by our group. Short-term thermal stability tests demonstrated the potential of this material for its application in geothermal environments. In this work, the authors unveil some of the physical and chemical properties of the cement composite in an attempt to better understand its performance as compared to standard cement in the absence of the polymer. Among the properties studied include material's elemental distribution, mineral composition, internal microstructure, and tensile elasticity. Polymer-cement composites have relatively larger, though not interconnected, levels of void spaces compared to conventional cement. Most of these void spaces are filled with polymer. The composites also seem to have higher levels of uncured cement grains as the polymer seems to act as a retarder in the curing process. The presence of homogeneously-distributed more flexible polymer in the cement brings about 60-70% higher tensile elasticity to the composite material, as confirmed experimentally and by density-functional calculations. The improved tensile elasticity suggests that the composite materials can outperform conventional cement under mechanical stress. In addition, calculations indicate that the bonding interactions between the cement and polymer remain stable over the range of strain studied. The results suggest that this novel polymer-cement formulation could represent an important alternative to conventional cement for application in high-temperature subsurface settings.11Nsciescopu

    Biogeosciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    No full text
    International audienceThis article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles in the American Geophysical Union Biogeosciences section, and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (a) Global collaboration, technology transfer, and application (Section 2), (b) Community engagement, community science, education, and stakeholder involvement (Section 3), and (c) Field, experimental, remote sensing, and real-time data research and application (Section 4). We discuss needs and strategies for implementing ICON and outline short-and long-term goals. The inclusion of global data and international community engagement are key to tackling grand challenges in biogeosciences. Although recent technological advances and growing open-access information across the world have enabled global collaborations to some extent, several barriers, ranging from technical to organizational to cultural, have remained in advancing interoperability and tangible scientific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing large-scale research questions and applications in the biogeosciences, where ICON principles are essential. Here, we list several opportunities for ICON, including coordinated experimentation and field observations across global sites, that are ripe for implementation in biogeosciences as a means to scientific advancements and social progress. Plain Language Summary Biogeosciences is an interdisciplinary field that requires multiscale global data and concerted international community efforts to tackle grand challenges. However, several technical, institutional, and cultural hurdles have remained as major roadblocks toward scientific progress, hindering seamless global data acquisition and international community engagement. To bring a paradigm shift in biogeosciences, there is a need to implement integrated, coordinated, open, and networked efforts, collectively known as the Integrated, Coordinated, Open, Networked (ICON) principles. In this article, we present three related commentaries about the state of ICON, discuss needs to reduce geographical bias in data for enhancing scientific progress, and identify action items. Action items are primarily people-centric DWIVEDI ET AL

    Physics and technology of the Next Linear Collider: a report submitted to Snowmass '96

    No full text
    We present the current expectations for the design and physics program of an e+e- linear collider of center of mass energy 500 GeV -- 1 TeV. We review the experiments that would be carried out at this facility and demonstrate its key role in exploring physics beyond the Standard Model over the full range of theoretical possibilities. We then show the feasibility of constructing this machine, by reviewing the current status of linear collider technology and by presenting a precis of our `zeroth-order' design

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species
    corecore