11 research outputs found

    The Human Splice Variant Δ16HER2 Induces Rapid Tumor Onset in a Reporter Transgenic Mouse

    Get PDF
    Several transgenic mice models solidly support the hypothesis that HER2 (ERBB2) overexpression or mutation promotes tumorigenesis. Recently, a HER2 splice variant lacking exon-16 (Δ16HER2) has been detected in human breast carcinomas. This alternative protein, a normal byproduct of HER2, has an increased transforming potency compared to wild-type (wt) HER2 receptors. To examine the ability of Δ16HER2 to transform mammary epithelium in vivo and to monitor Δ16HER2-driven tumorigenesis in live mice, we generated and characterized a mouse line that transgenically expresses both human Δ16HER2 and firefly luciferase under the transcriptional control of the MMTV promoter. All the transgenic females developed multifocal mammary tumors with a rapid onset and an average latency of 15.11 weeks. Immunohistochemical analysis revealed the concurrent expression of luciferase and the human Δ16HER2 oncogene only in the mammary gland and in strict correlation with tumor development. Transgenic Δ16HER2 expressed on the tumor cell plasma membrane from spontaneous mammary adenocarcinomas formed constitutively active homodimers able to activate the oncogenic signal transduction pathway mediated through Src kinase. These new transgenic animals demonstrate the ability of the human Δ16HER2 isoform to transform “per se” mammary epithelium in vivo. The high tumor incidence as well as the short latency strongly suggests that the Δ16HER2 splice variant represents the transforming form of the HER2 oncoprotein

    Effects of Acute Cytomegalovirus Infection on Rat Islet Allograft Survival

    Get PDF
    Transplantation of pancreatic islets is a promising therapy for the treatment of type 1 diabetes mellitus. However, long-term islet graft survival rates are still unsatisfactory low. In this study we investigated the role of cytomegalovirus (CMV) in islet allograft failure. STZ-diabetic rats received an allogenic islet graft in combination with either an acute CMV infection or control infection. A third group received ganciclovir treatment in addition to the CMV infection. Graft function was assessed by measuring basal blood glucose levels. After sacrifice, the islet grafts were retrieved for analysis of infection and leukocyte infiltration. CMV-infected recipients demonstrated accelerated islet graft failure compared to noninfected controls. CMV infection of the graft was only observed prior to complete graft failure. Quantification of the leukocyte infiltration demonstrated increased CD8(+) T-cell and NK cell infiltration in the CMV-infected grafts compared to the controls. This suggests that CMV infection accelerates immune-mediated graft destruction. Antiviral ganciclovir treatment did not prevent accelerated graft failure, despite effectively decreasing the grade of infection. Our data confirm the recently published CITR data, which state that CMV is an independent risk factor for failure of islet grafts. Also, our data demonstrate that new approaches for preventing virus-induced islet allograft failure may be required

    Quantitative in Situ Analysis of FoxP3 +

    No full text
    There is abundant evidence that immune cells infiltrating into a transplanted organ play a critical role for destructive inflammatory or regulatory immune reactions. Quantitative in situ analysis (i.e. in tissue sections) of immune cells remains challenging due to a lack of objective methodology. Laser scanning cytometry (LSC/iCys) is a recently developed methodology that utilizes fluorescence-based quantitative measurements on tissue sections or other cellular preparations at a single-cell level. In this study, we have developed a novel objective method for analysis of immune cells, including Foxp3(+) T regulatory cell (T reg), on formalin-fixed / paraffin embedded (FFPE) transplant biopsy sections using LSC/iCys. The development of multiple immunofluorescent staining was established using FFPE human tonsil sample. The CD4/CD8 ratio and the population of T reg among CD4(+) cells were analyzed using LSC/iCys and compared with the results from conventional flow cytometry analysis (FCM). Our multiple immunofluorescent staining techniques allow obtaining clear staining on FFPE sections. The CD4/CD8 ratio analyzed by LSC/iCys was concordant with those obtained by FCM. This method was also applicable for liver, small intestine, kidney, pancreas and heart transplant biopsy sections and provide an objective quantification of T regs within the grafts
    corecore