1,738 research outputs found

    The Emperor Goose: An Annotated Bibliography

    Get PDF
    This bibliography contains more than 500 published and unpublished references relevant to the emperor goose (Chen canagica). The referenced works date from the early exploration of Beringia and Alaska through the formal description of the species in 1802 to 1993

    Tidal and spring-neap variations in horizontal dispersion in a partially mixed estuary

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07023, doi:10.1029/2007JC004644.A sequence of dye releases in the Hudson River estuary provide a quantitative assessment of horizontal dispersion in a partially mixed estuary. Dye was released in the bottom boundary layer on 4 separate occasions, with varying tidal phase and spring-neap conditions. The three-dimensional distribution of dye was monitored by two vessels with in situ, profiling fluorometers. The three-dimensional spreading of the dye was estimated by calculating the time derivative of the second moment of the dye in the along-estuary, cross-estuary and vertical directions. The average along-estuary dispersion rate was about 100 m2/s, but maximum rates up to 700 m2/s occurred during ebb tides, and minimum rates occurred during flood. Vertical shear dispersion was the principal mechanism during neap tides, but transverse shear dispersion became more important during springs. Suppression of mixing across the pycnocline limited the vertical extent of the patch in all but the maximum spring-tide conditions, with vertical diffusivities in the pycnocline estimated at 4 × 10−5 m2/s during neaps. The limited vertical extent of the dye patch limited the dispersion of the dye relative to the overall estuarine dispersion rate, which was an order of magnitude greater than that of the dye. This study indicates that the effective dispersion of waterborne material in an estuary depends sensitively on its vertical distribution as well as the phase of the spring-neap cycle.This research was supported by National Science Foundation Grant OCE04-52054 (W. Geyer), OCE00-99310 (R. Houghton), and OCE00-95913 (R. Chant)

    Surface ruptures on cross-faults in the 24 November 1987 Superstition Hills, California, earthquake sequence

    Get PDF
    Left-lateral slip occurred on individual surface breaks along northeast-trending faults associated with the 24 November 1987 earthquake sequence in the Superstition Hills, Imperial Valley, California. This sequence included the M_s = 6.2 event on a left-lateral, northeast-trending “cross-fault” between the Superstition Hills fault (SHF) and Brawley seismic zone, which was spatially associated with the left-lateral surface breaks. Six distinct subparallel cross-faults broke at the surface, with rupture lengths ranging from about Formula to 10 km and maximum displacements ranging from 30 to 130 mm. About half a day after the M_s = 6.2 event, an M_s = 6.6 earthquake nucleated near the intersection of the cross-faults with the SHF, and rupture propagated southeast along the SHF. Whereas right-lateral slip on the SHF occurred dominantly on a single trace in a narrow zone, the cross-fault surface slip was distributed over several stands across a 10-km-wide zone. Also, whereas afterslip accounted for a large proportion of total slip on the SHF, there is no evidence for afterslip on the cross-faults. We present documentation of these surface ruptures. A simple mechanical model of faulting illustrates how the foreshock sequence may have triggered the main rupture. Displacement on other cross-faults could trigger an event on the southern San Andreas fault by a similar mechanism in the future

    Costs of Locomotion in Polar Bears: When do the Costs Outweigh the Benefits of Chasing Down Terrestrial Prey?

    Get PDF
    Trade-offs between locomotory costs and foraging gains are key elements in determining constraints on predator–prey interactions. One intriguing example involves polar bears pursuing snow geese on land. As climate change forces polar bears to spend more time ashore, they may need to expend more energy to obtain land-based food. Given that polar bears are inefficient at terrestrial locomotion, any extra energy expended to pursue prey could negatively impact survival. However, polar bears have been regularly observed engaging in long pursuits of geese and other land animals, and the energetic worth of such behaviour has been repeatedly questioned. We use data-driven energetic models to examine how energy expenditures vary across polar bear mass and speed. For the first time, we show that polar bears in the 125–235 kg size range can profitably pursue geese, especially at slower speeds. We caution, however, that heat build-up may be the ultimate limiting factor in terrestrial chases, especially for larger bears, and this limit would be reached more quickly with warmer environmental temperatures

    Sediment transport due to extreme events : the Hudson River estuary after tropical storms Irene and Lee

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 5451–5455, doi:10.1002/2013GL057906.Tropical Storms Irene and Lee in 2011 produced intense precipitation and flooding in the U.S. Northeast, including the Hudson River watershed. Sediment input to the Hudson River was approximately 2.7 megaton, about 5 times the long-term annual average. Rather than the common assumption that sediment is predominantly trapped in the estuary, observations and model results indicate that approximately two thirds of the new sediment remained trapped in the tidal freshwater river more than 1 month after the storms and only about one fifth of the new sediment reached the saline estuary. High sediment concentrations were observed in the estuary, but the model results suggest that this was predominantly due to remobilization of bed sediment. Spatially localized deposits of new and remobilized sediment were consistent with longer term depositional records. The results indicate that tidal rivers can intercept (at least temporarily) delivery of terrigenous sediment to the marine environment during major flow events.This research was supported by grants from the Hudson Research Foundation (002/07A) and the National Science Foundation (1232928).2014-04-1
    corecore