934 research outputs found

    Five-year efficacy and safety of asfotase alfa therapy for adults and adolescents with hypophosphatasia

    Get PDF
    Hypophosphatasia (HPP) features low tissue-nonspecific alkaline phosphatase (TNSALP) isoenzyme activity resulting in extracellular accumulation of its substrates including pyridoxal 5\u27-phosphate (PLP), the principal circulating form of vitamin B6, and inorganic pyrophosphate (PPi), a potent inhibitor of mineralization. Asfotase alfa is an enzyme replacement therapy developed to treat HPP. This multinational, randomized, open-label study (NCT01163149; EudraCT 2010-019850-42) evaluated the efficacy and safety of asfotase alfa in adults and adolescents 13-66 years of age with HPP. The study comprised a 6-month primary treatment period and a 4.5-year extension phase. In the primary treatment period, 19 patients were randomized to receive asfotase alfa 0.3 mg/kg/d subcutaneously (SC; n = 7), asfotase alfa 0.5 mg/kg/d SC (n = 6), or no treatment (control; n = 6) for 6 months. In the extension phase, patients received asfotase alfa (0.5 mg/kg/d for 6 mo-1 y, then 1 mg/kg/d 6 d/wk). During the primary treatment period, changes from Baseline to Month 6 in plasma PLP and PPi concentrations (coprimary efficacy measure) were greater in the combined asfotase alfa group compared with the control group, reaching statistical significance for PLP (P = 0.0285) but not for PPi (P = 0.0715). However, for the total cohort, the within subject changes in both PLP and PPi after 6 months and over 5 years of treatment with asfotase alfa were significant (P \u3c 0.05). Secondary efficacy measures included transiliac crest histomorphometry, dual-energy X-ray absorptiometry (DXA), and the 6-Minute Walk Test (6MWT). A significant decrease from Baseline in mineralization lag time was observed in the combined asfotase alfa group at Year 1. There were no significant differences between treated and control patients in DXA mean bone mineral density results at 6 months; Z-scores and T-scores were within the expected range for age at Baseline and remained so over 5 years of treatment. On the 6MWT, median (min, max) distance walked increased from 355 (10, 620; n = 19) meters before treatment to 450 (280, 707; n = 13) meters at 5 years (P \u3c 0.05). Results for the exploratory outcome measures suggested improvements in gross motor function, muscle strength, and patient-reported functional disability over 5 years of treatment. There were no deaths during this study. Asfotase alfa was generally well tolerated; the most common adverse events were mild to moderate injection site reactions. This study suggests that in adults and adolescents with pediatric-onset HPP, treatment with asfotase alfa is associated with normalization of circulating TNSALP substrate levels and improved functional abilities

    A comparison of regional and general anesthesia in patients undergoing carotid endarterectomy

    Get PDF
    AbstractPurpose: The optimal anesthetic for use during carotid endarterectomy is controversial. Advocates of regional anesthesia suggest that it may reduce the incidence of perioperative complications in addition to decreasing operative time and hospital costs. To determine whether the anesthetic method correlated with the outcome of the operation, a retrospective review of 3975 carotid operations performed over a 32-year period was performed.Methods: The records of all patients who underwent carotid endarterectomy at our institution from 1962 to 1994 were retrospectively reviewed. Operations performed with the patient under regional anesthesia were compared with those performed with the patient under general anesthesia with respect to preoperative risk factors and perioperative complications.Results: Regional anesthesia was used in 3382 operations (85.1%). There were no significant differences in the age, gender ratio, or the rates of concomitant medical illnesses between the two patient populations. The frequency of perioperative stroke in the series was 2.2%; that of myocardial infarction, 1.7%; and that of perioperative death, 1.5%. There were no statistically significant differences in the frequency of perioperative stroke, myocardial infarction, or death on the basis of anesthetic technique. A trend toward higher frequencies of perioperative stroke (3.2% vs 2.0%) and perioperative death (2.0% vs 1.4%) in the general anesthesia group was noted. In examining operative indications, however, there was a significant increase in the percentage of patients receiving general anesthesia who had sustained preoperative strokes when compared with the regional anesthesia patients (36.1% vs 26.4%; p < 0.01). There was also a statistically significant higher frequency of contralateral total occlusion in the general anesthesia group (21.8% vs 15.4%; p = 0.001). The trend toward increased perioperative strokes in the general anesthesia group may be explicable either by the above differences in the patient populations or by actual differences based on anesthetic technique that favor regional anesthesia.Conclusions: In a retrospective review of a large series of carotid operations, regional anesthesia was shown to be applicable to the vast majority of patients with good clinical outcome. Although the advantages over general anesthesia are perhaps small, the versatility and safety of the technique is sufficient reason for vascular surgeons to include it in their armamentarium of surgical skills. Considering that carotid endarterectomy is a procedure in which complication rates are exceedingly low, a rigidly controlled, prospective randomized trial may be required to accurately assess these differences. (J Vasc Surg 1996;24;946-56.

    Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function.

    Get PDF
    The beta-adrenergic receptor kinase 1 (beta ARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the beta ARK1 gene in mice by homologous recombination. No homozygote beta ARK1-/- embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, beta ARK1-/- embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the "thin myocardium syndrome" observed upon gene inactivation of several transcription factors (RXR alpha, N-myc, TEF-1, WT-1). Lethality in beta ARK1-/- embryos is likely due to heart failure as they exhibit a > 70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in beta ARK1-/- embryos demonstrate that beta ARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development

    Graph theoretical approach to study eQTL: a case study of Plasmodium falciparum

    Get PDF
    Motivation: Analysis of expression quantitative trait loci (eQTL) significantly contributes to the determination of gene regulation programs. However, the discovery and analysis of associations of gene expression levels and their underlying sequence polymorphisms continue to pose many challenges. Methods are limited in their ability to illuminate the full structure of the eQTL data. Most rely on an exhaustive, genome scale search that considers all possible locus–gene pairs and tests the linkage between each locus and gene

    Tnni3k Modifies Disease Progression in Murine Models of Cardiomyopathy

    Get PDF
    The Calsequestrin (Csq) transgenic mouse model of cardiomyopathy exhibits wide variation in phenotypic progression dependent on genetic background. Seven heart failure modifier (Hrtfm) loci modify disease progression and outcome. Here we report Tnni3k (cardiac Troponin I-interacting kinase) as the gene underlying Hrtfm2. Strains with the more susceptible phenotype exhibit high transcript levels while less susceptible strains show dramatically reduced transcript levels. This decrease is caused by an intronic SNP in low-transcript strains that activates a cryptic splice site leading to a frameshifted transcript, followed by nonsense-mediated decay of message and an absence of detectable protein. A transgenic animal overexpressing human TNNI3K alone exhibits no cardiac phenotype. However, TNNI3K/Csq double transgenics display severely impaired systolic function and reduced survival, indicating that TNNI3K expression modifies disease progression. TNNI3K expression also accelerates disease progression in a pressure-overload model of heart failure. These combined data demonstrate that Tnni3k plays a critical role in the modulation of different forms of heart disease, and this protein may provide a novel target for therapeutic intervention

    Ex Vivo

    Get PDF
    The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI) in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4-CD8-γδ+ T cell population in the peripheral blood of 90/610 (15%) healthy subjects. The appearance of CD3+CD4-CD8-γδ+ T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4-CD8-γδ+ T cells are either excluded or separately enumerated from the overall frequency determination

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel

    Get PDF
    The deposited article is a pre-print version and it has not been submitted to peer reviewing. This article version was provided by bioRxiv and is the preprint first posted online Mar. 26, 2017. This publication hasn't any creative commons license associated. The deposited article version contains attached the supplementary materials within the pdf.Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here we report an advanced recombinant inbred line (RIL) quantitative trait locus (QTL) mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140-190 generations, and inbreeding by selfing for 13-16 generations. The panel contains 22% of single nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across >95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad sense heritability in the CeMEE. While simulations show we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits does not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor (r2 < 10%), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.National Science Foundation grant: (PHY-1125915); National Institutes of Health grants: (R25-GM-067110, R01-GM-089972, R01-GM-121828); Gordon and Betty Moore Foundation grant: (2919.01); Human Frontiers Science Program (RGP0045/2010); European Research Council grant: (FP7/2007-2013/243285); Agence Nationale de la Recherche grant: (ANR-14-ACHN-0032-01).info:eu-repo/semantics/publishedVersio
    corecore