2 research outputs found

    Anticancer RuII and RhIII Piano-Stool Complexes that are Histone Deacetylase Inhibitors

    Get PDF
    The first examples of RuII and RhIII piano-stool complex histone deacetylase (HDAC) inhibitors are presented. The novel complexes have antiproliferative activity against H460 non-small-cell lung carcinoma cells that is comparable to the clinically used HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Strong evidence for HDAC inhibition as a primary mechanism of action is provided. The complexes reported here represent an important step towards the design of highly active and selective HDAC inhibitors

    Pyridylphosphinate Metal Complexes: Synthesis, Structural Characterisation and Biological Activity

    Get PDF
    For the first time, a series of 25 pseudo-octahedral pyridylphosphinate metal complexes (Ru, Os, Rh, Ir) has been synthesised and assessed in biological systems. Each metal complex incorporates a pyridylphosphinate ligand, a monodentate halide and a capping η6-bound aromatic ligand. Solid- and solution-state analyses of two complexes reveal a structural preference for one of a possible two diastereomers. The metal chlorides hydrolyse rapidly in D2O to form a 1:1 equilibrium ratio between the aqua and chloride adducts. The pKa of the aqua adduct depends upon the pyridyl substituent and the metal but has little dependence upon the phosphinate R’ group. Toxicity was measured in vitro against non-small cell lung carcinoma H460 cells, with the most potent complexes reporting IC50 values around 50 μM. Binding studies with selected amino acids and nucleobases provide a rationale for the variation in toxicity observed within the series. Finally, an investigation into the ability of the chelating amino acid L-His to displace the phosphinate O‒metal bond shows the potential for phosphinate complexes to act as prodrugs that can be activated in the intracellular environment
    corecore