22 research outputs found

    Experience with fibre channel in the environment of the ATLAS DAQ protoype "-1" project

    Get PDF
    Fibre Channel equipment has been evaluated in the environment of the ATLAS DAQ prototype "-1". Fibre Channel PCI and PMC cards have been tested on PwerPC-based VME processor boards running LynxOS and on Pentium-based personal computers running Windows NT. The performance in terms of overhead and bandwidth has been measured in point-to-point, arbitrated loop and fabric configuration with a Fibre Ch annel switch. The possible used of the equipment for event building in the ATLAS DAQ prototype "-1" has been studied

    Gravity monitoring of underground flash flood events to study their impact on groundwater recharge and the distribution of karst voids

    Get PDF
    Flash flood events are expected to become increasingly common with the global increases in weather extremes. They are a significant natural hazard that affects karst landscapes, which host large resources of drinking water worldwide. The role played by underground flood events in the karst aquifer recharge is complex due to the heterogeneity of the basement which remains poorly understood. We present the analysis of 20 incave flash flood events affecting the Rochefort karst system (Belgium) using continuous gravity measurements at one single station and water level sensors installed in caves. Underground flood events typically produce a peak in the gravity signal, due to an increase in the associated mass change. After the flood, the gravity values drop but remain slightly increased compared to before the flood event. Via forward gravity modeling, we demonstrate that this remaining anomaly can be reasonably explained by the infiltration of local rainfall within the karst system rather than by allogenic recharge of the aquifer. Flash floods are mainly restricted to connected voids. This allows us to utilize them as proxies to investigate the distribution of cavities in the karst system. Forward modeling of the gravitational attraction induced by the mapped caves being flooded yields a gravity signal much smaller than the observed one. We conclude that at least 50% more cavities than those previously mapped are required to match the measured anomalies. This presents opportunities for implementing similar approaches in other diverse porous media, using gravity monitoring of hydrological processes (e.g., infiltration fronts, hydrothermalism, or tide effects in coastal aquifers) as proxies to characterize underground properties

    Continuous gravimetric monitoring as an integrative tool for exploring hydrological processes in the Lomme Karst System (Belgium)

    No full text
    Karst systems are highly heterogeneous which makes their hydrology difficult to understand. Geophysical techniques offer non-invasive and integrative methods that help interpreting such systems as a whole. Among these techniques, gravimetry has been increasingly used in the last decade to characterize the hydrological behavior of complex systems, e.g. karst environments or volcanoes. We present a continuous microgravimetric monitoring of 3 years in the karstic area of Rochefort (Belgium), that shows multiple occurrences of caves and karstic features. The gravity record includes measurements of a GWR superconducting gravimeter, a Micro-g LaCoste gPhone and an absolute FG5 gravimeter. Together with meteorological measurements and a surface/in-cave hydrogeological monitoring, we were able to improve the knowledge of hydrological processes. On the one hand, the data allowed identifying seasonal groundwater content changes in the unsaturated zone of the karst area, most likely to be linked to temporary groundwater storage occurring in the most karstified layers closed to the surface. Combined with additional geological information, modelling of the gravity signal based on the vertical potential of the gravitational attraction was then particularly useful to estimate the seasonal recharge leading to the temporary subsurface groundwater storage. On the other hand, the gravity monitoring of flash floods occurring in deeper layers after intense rainfall events informed on the effective porosity gradient of the limestones. Modelling was then helpful to identify the hydrogeological role played by the cave galleries with respect to the hosting limestones during flash floods. These results are also compared with measurements of an in-cave gravimetric monitoring performed with a gPhone spring gravimeter. An Electrical Resistivity Tomography monitoring is also conducted at site and brings additional information useful to verify the interpretation made with the gravimetric monitorin

    Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes

    No full text
    In recent years, carbon nanotubes (CNTs) grown on fibers have attracted a lot of interest as an additional reinforcing component in conventional fiber-reinforced composites to improve the properties of the fiber/matrix interface. Due to harsh growth conditions, the CNT-grafted fibers often exhibit degraded tensile properties. In the current study we explore an alternative approach to deliver CNTs to the fiber surface by dispersing CNTs in the fiber sizing formulation. This route takes advantage of the developed techniques for CNT dispersion in resins and introduces no damage to the fibers. We focus on unidirectional glass fiber/epoxy macro-composites where CNTs are introduced in three ways: (1) in the fiber sizing, (2) in the matrix and (3) in the fiber sizing and matrix simultaneously. Interfacial shear strength (IFSS) is investigated using single-fiber push-out microindentation. The results of the test reveal an increase of IFSS in all three cases. The maximum gain (over 90%) is achieved in the composite where CNTs are introduced solely in the fiber sizing.status: publishe
    corecore