5,975 research outputs found

    Applicability of Boussinesq approximation in a turbulent fluid with constant properties

    Full text link
    The equations of motion describing buoyant fluids are often simplified using a set of approximations proposed by J. Boussinesq one century ago. To resume, they consist in assuming constant fluid properties, incompressibility and conservation of calories during heat transport. Assuming fulfilment of the first requirement (constant fluid properties), we derive a set of 4 criteria for assessing the validity of the two other requirements in turbulent Rayleigh-B\'enard convection. The first criterion αΔ1\alpha \Delta \ll 1 simply results from the incompressibility condition in the thermal boundary layer (α\alpha and Δ\Delta are the thermal expansion coefficient and the temperature difference driving the flow). The 3 other criteria are proportional or quadratic with the density stratification or, equivalently with the temperature difference resulting from the adiabatic gradient across the cell Δh\Delta_{h}. Numerical evaluations with air, water and cryogenic helium show that most laboratory experiments are free from such Boussinesq violation as long as the first criterion is fulfilled. In ultra high Rayleigh numbers (Ra>1016Ra>10^{16}) experiments in He, one of the stratification criteria, scaling with αΔh\alpha \Delta_{h}, could be violated. This criterion garanties that pressure fluctuations have a negligible influence both on the density variation and on the heat transfer equation through compression/expansion cycles. Extrapolation to higher RaRa suggests that strong violation of Boussinesq approximation could occur in atmospheric convection.Comment: Submitted to Phys.Fluids (oct 2007

    Shot-noise statistics in diffusive conductors

    Full text link
    We study the full probability distribution of the charge transmitted through a mesoscopic diffusive conductor during a measurement time T. We have considered a semi-classical model, with an exclusion principle in a discretized single-particle phase-space. In the large T limit, numerical simulations show a universal probability distribution which agrees very well with the quantum mechanical prediction of Lee, Levitov and Yakovets [PRB {51} 4079 (1995)] for the charge counting statistics. Special attention is given to its third cumulant, including an analysis of finite size effects and of some experimental constraints for its accurate measurement.Comment: Submitted to Eur. Phys. J. B (Jan. 2002

    Vortex spectrum in superfluid turbulence: interpretation of a recent experiment

    Full text link
    We discuss a recent experiment in which the spectrum of the vortex line density fluctuations has been measured in superfluid turbulence. The observed frequency dependence of the spectrum, f5/3f^{-5/3}, disagrees with classical vorticity spectra if, following the literature, the vortex line density is interpreted as a measure of the vorticity or enstrophy. We argue that the disagrement is solved if the vortex line density field is decomposed into a polarised field (which carries most of the energy) and an isotropic field (which is responsible for the spectrum).Comment: Submitted for publication http://crtbt.grenoble.cnrs.fr/helio/GROUP/infa.html http://www.mas.ncl.ac.uk/~ncfb

    Quantum turbulence at finite temperature: the two-fluids cascade

    Get PDF
    To model isotropic homogeneous quantum turbulence in superfluid helium, we have performed Direct Numerical Simulations (DNS) of two fluids (the normal fluid and the superfluid) coupled by mutual friction. We have found evidence of strong locking of superfluid and normal fluid along the turbulent cascade, from the large scale structures where only one fluid is forced down to the vorticity structures at small scales. We have determined the residual slip velocity between the two fluids, and, for each fluid, the relative balance of inertial, viscous and friction forces along the scales. Our calculations show that the classical relation between energy injection and dissipation scale is not valid in quantum turbulence, but we have been able to derive a temperature--dependent superfluid analogous relation. Finally, we discuss our DNS results in terms of the current understanding of quantum turbulence, including the value of the effective kinematic viscosity

    Phase space polarization and the topological string: a case study

    Get PDF
    We review and elaborate on our discussion in hep-th/0606112 on the interplay between the target space and the worldsheet description of the open topological string partition function, for the example of the conifold. We discuss the appropriate phase space and canonical form for the system. We find a map between choices of polarization and the worldsheet description, based on which we study the behavior of the partition function under canonical transformations.Comment: 18 pages, invited review for MPL

    Heat Transfer in Turbulent Rayleigh-Benard Convection below the Ultimate Regime

    Get PDF
    A Rayleigh-B\'enard cell has been designed to explore the Prandtl (Pr) dependence of turbulent convection in the cross-over range 0.7<Pr<210.7<Pr<21 and for the full range of soft and hard turbulences, up to Rayleigh number Ra1011Ra\simeq 10^{11}. The set-up benefits from the favourable characteristics of cryogenic helium-4 in fluid mechanics, in-situ fluid property measurements, and special care on thermometry and calorimetric instrumentation. The cell is cylindrical with diameter/height=0.5diameter/height=0.5. The effective heat transfer Nu(Ra,Pr)Nu(Ra,Pr) has been measured with unprecedented accuracy for cryogenic turbulent convection experiments in this range of Rayleigh numbers. Spin-off of this study include improved fits of helium thermodynamics and viscosity properties. Three main results were found. First the Nu(Ra)Nu(Ra) dependence exhibits a bimodality of the flow with 474-7 % difference in NuNu for given RaRa and PrPr. Second, a systematic study of the side-wall influence reveals a measurable effect on the heat transfer. Third, the Nu(Pr)Nu(Pr) dependence is very small or null : the absolute value of the average logarithmic slope (dlnNu/dlnPr)Ra(dlnNu/dlnPr)_{Ra} is smaller than 0.03 in our range of PrPr, which allows to disciminate between contradictory experiments [Ashkenazi \textit{et al.}, Phys. Rev.Lett. 83:3641 (1999)][Ahlers \textit{et al.}, Phys.Rev.Lett. 86:3320 (2001)].Comment: submitted for publication to JLTP (august 2003

    Mesoscale Equipartition of kinetic energy in Quantum Turbulence

    Get PDF
    The turbulence of superfluid helium is investigated numerically at finite temperature. Direct numerical simulations are performed with a "truncated HVBK" model, which combines the continuous description of the Hall-Vinen-Bekeravich-Khalatnikov equations with the additional constraint that this continuous description cannot extend beyond a quantum length scale associated with the mean spacing between individual superfluid vortices. A good agreement is found with experimental measurements of the vortex density. Besides, by varying the turbulence intensity only, it is observed that the inter-vortex spacing varies with the Reynolds number as Re3/4Re^{-3/4}, like the viscous length scale in classical turbulence. In the high temperature limit, Kolmogorov's inertial cascade is recovered, as expected from previous numerical and experimental studies. As the temperature decreases, the inertial cascade remains present at large scales while, at small scales, the system evolves towards a statistical equipartition of kinetic energy among spectral modes, with a characteristic k2k^2 velocity spectrum. The accumulation of superfluid excitations on a range of mesoscales enables the superfluid to keep dissipating kinetic energy through mutual friction with the residual normal fluid, although the later becomes rare at low temperature. It is found that most of the superfluid vorticity can concentrate on these mesoscales at low temperature, while it is concentrated in the inertial range at higher temperature. This observation should have consequences on the interpretation of decaying turbulence experiments, which are often based on vortex line density measurements.Comment: 6 pages, 5 figure

    Kolmogorov cascade and equipartition of kinetic energy in numerical simulation of Superfluid turbulence

    Get PDF
    International audienceThe turbulence of a superfluid is investigated by direct numerical simulations at finite temperature and high Reynolds numbers using the continuous model. The superfluid component is described by the Euler equation while the normal fluid component is described by the Navier-Stokes equation, both being coupled by mutual friction. In the high temperature limit, the Kolmogorov cascade is recovered, as expected from previous numerical and experimental studies. As the temperature decreases, the Kolmogorov cascade remains present at large scales while, at small scales, the system evolves towards a statistical equipartition of kinetic energy among spectral modes

    Vortex density spectrum of quantum turbulence

    Full text link
    The fluctuations of the vortex density in a turbulent quantum fluid are deduced from local second-sound attenuation measurements. These measurements are performed with a micromachined open-cavity resonator inserted across a flow of turbulent He-II near 1.6 K. The power spectrum of the measured vortex line density is compatible with a (-5/3) power law. The physical interpretation, still open, is discussed.Comment: Submitted to Europhys. Let
    corecore