11 research outputs found

    How are legal matters related to the access of traditional knowledge being considered in the scope of ethnobotany publications in Brazil?

    Full text link

    Biological indicators of stress in pacu (Piaractus mesopotamicus) after capture

    No full text
    The effects of capture (chasing, netting and air exposure) on cortisol, glucose, chloride, sodium, potassium and calcium concentrations, osmolality, hematocrit, hemoglobin concentration, red blood cells count (RBC) and mean corpuscular volume (MCV) were investigated in pacu (Piaractus mesopotamicus). A total of 132 fish (49.7 ± 11.7 g) were subjected to capture and 3 minutes air exposure and capture and 5 minutes air exposure. Nine fish at each treatment were sampled at 5, 15, 30, 60 minutes and 24 hours after the procedure. Nine undisturbed fish were sacrificed before the handling and used as controls. Capture resulted in a rise in blood cortisol and glucose 30 and 5 minutes, respectively, after both air exposures. Both indicators returned to resting levels 24 hours after capture. In both fish groups, plasma chloride decreased 60 minutes after capture, not recovering the resting levels within 24 hours after, and serum sodium rose at 15 and 30 minutes and recovered the resting levels 24 hours later. There were no significant changes neither in potassium, calcium and osmolality nor in hematocrit, hemoglobin, RBC and MCV as a consequence of capture. The sequential stressors imposed to pacu during capture activated the brain-pituitary-interrenal axis (cortisol and glucose responses) but the activation of the brain-sympathetic-chromaffin cell axis was apparently moderate (ionic and hematological responses)

    Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory

    No full text
    Persistent neuronal spiking has long been considered the mechanism underlying working memory, but recent proposals argue for alternative 'activity-silent' substrates. Using monkey and human electrophysiology data, we show here that attractor dynamics that control neural spiking during mnemonic periods interact with activity-silent mechanisms in the prefrontal cortex (PFC). This interaction allows memory reactivations, which enhance serial biases in spatial working memory. Stimulus information was not decodable between trials, but remained present in activity-silent traces inferred from spiking synchrony in the PFC. Just before the new stimulus, this latent trace was reignited into activity that recapitulated the previous stimulus representation. Importantly, the reactivation strength correlated with the strength of serial biases in both monkeys and humans, as predicted by a computational model that integrates activity-based and activity-silent mechanisms. Finally, single-pulse transcranial magnetic stimulation applied to the human PFC between successive trials enhanced serial biases, thus demonstrating the causal role of prefrontal reactivations in determining working-memory behavior
    corecore