15,182 research outputs found

    Macroscopic Distinguishability Between Quantum States Defining Different Phases of Matter: Fidelity and the Uhlmann Geometric Phase

    Full text link
    We study the fidelity approach to quantum phase transitions (QPTs) and apply it to general thermal phase transitions (PTs). We analyze two particular cases: the Stoner-Hubbard itinerant electron model of magnetism and the BCS theory of superconductivity. In both cases we show that the sudden drop of the mixed state fidelity marks the line of the phase transition. We conduct a detailed analysis of the general case of systems given by mutually commuting Hamiltonians, where the non-analyticity of the fidelity is directly related to the non-analyticity of the relevant response functions (susceptibility and heat capacity), for the case of symmetry-breaking transitions. Further, on the case of BCS theory of superconductivity, given by mutually non-commuting Hamiltonians, we analyze the structure of the system's eigenvectors in the vicinity of the line of the phase transition showing that their sudden change is quantified by the emergence of a generically non-trivial Uhlmann mixed state geometric phase.Comment: 18 pages, 8 figures. Version to be publishe

    False Vacuum Transitions - Analytical Solutions and Decay Rate Values

    Full text link
    In this work we show a class of oscillating configurations for the evolution of the domain walls in Euclidean space. The solutions are obtained analytically. Phase transitions are achieved from the associated fluctuation determinant, by the decay rates of the false vacuum.Comment: 6 pages, improved to match the final version to appear in EP

    Eisenstein Series and String Thresholds

    Get PDF
    We investigate the relevance of Eisenstein series for representing certain G(Z)G(Z)-invariant string theory amplitudes which receive corrections from BPS states only. G(Z)G(Z) may stand for any of the mapping class, T-duality and U-duality groups Sl(d,Z)Sl(d,Z), SO(d,d,Z)SO(d,d,Z) or Ed+1(d+1)(Z)E_{d+1(d+1)}(Z) respectively. Using G(Z)G(Z)-invariant mass formulae, we construct invariant modular functions on the symmetric space K\G(R)K\backslash G(R) of non-compact type, with KK the maximal compact subgroup of G(R)G(R), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincar\'e upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and gg-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R4R^4 and R4H4g4R^4 H^{4g-4} couplings in toroidal compactifications of M-theory to any dimension D4D\geq 4 and D6D\geq 6 respectively.Comment: Latex2e, 60 pages; v2: Appendix A.4 extended, 2 refs added, thms renumbered, plus minor corrections; v3: relation (1.7) to math Eis series clarified, eq (3.3) and minor typos corrected, final version to appear in Comm. Math. Phys; v4: misprints and Eq C.13,C.24 corrected, see note adde

    A computationally efficient method for calculating the maximum conductance of disordered networks: Application to 1-dimensional conductors

    Full text link
    Random networks of carbon nanotubes and metallic nanowires have shown to be very useful in the production of transparent, conducting films. The electronic transport on the film depends considerably on the network properties, and on the inter-wire coupling. Here we present a simple, computationally efficient method for the calculation of conductance on random nanostructured networks. The method is implemented on metallic nanowire networks, which are described within a single-orbital tight binding Hamiltonian, and the conductance is calculated with the Kubo formula. We show how the network conductance depends on the average number of connections per wire, and on the number of wires connected to the electrodes. We also show the effect of the inter-/intra-wire hopping ratio on the conductance through the network. Furthermore, we argue that this type of calculation is easily extendable to account for the upper conductivity of realistic films spanned by tunneling networks. When compared to experimental measurements, this quantity provides a clear indication of how much room is available for improving the film conductivity.Comment: 7 pages, 5 figure

    Self-interaction errors in density functional calculations of electronic transport

    Full text link
    All density functional calculations of single-molecule transport to date have used continuous exchange-correlation approximations. The lack of derivative discontinuity in such calculations leads to the erroneous prediction of metallic transport for insulating molecules. A simple and computationally undemanding atomic self-interaction correction greatly improves the agreement with experiment for the prototype Au/dithiolated-benzene/Au junction.Comment: 4 pages. Also available at http://www.smeagol.tcd.i

    Electromagnetic Fields of Slowly Rotating Magnetized Gravastars

    Full text link
    We study the dipolar magnetic field configuration and present solutions of Maxwell equations in the internal background spacetime of a a slowly rotating gravastar. The shell of gravastar where magnetic field penetrated is modeled as sphere consisting of perfect highly magnetized fluid with infinite conductivity. Dipolar magnetic field of the gravastar is produced by a circular current loop symmetrically placed at radius aa at the equatorial plane.Comment: 5 pages, 2 figures, accepted for publication to Mod. Phys. Lett.

    Gravitational collapse of Type II fluid in higher dimensional space-times

    Full text link
    We find the general solution of the Einstein equation for spherically symmetric collapse of Type II fluid (null strange quark fluid) in higher dimensions. It turns out that the nakedness and curvature strength of the shell focusing singularities carry over to higher dimensions. However, there is shrinkage of the initial data space for a naked singularity of the Vaidya collapse due to the presence of strange quark matter.Comment: RevTex4 style, 4 pages; Accepted in Phys. Rev.
    corecore