2 research outputs found

    Influence of lithium in neuron-glia interaction in primary hippocampal cell culturing

    Get PDF
    Recently, special attention has been given to the possible neuroprotective effects of lithium, especially by the discovery of its regulatory effects on pro and anti-apoptotic proteins. Lithium substantially increases the cytoprotective proteins expression in the central nervous system, both in rat cortex and in human cells of neuronal origin. In addition to neuroprotective actions, it aids in the regeneration of axons in the central nervous system of mammals. Lithium negatively regulates the expression and activity of enzymes that exert important functions in cerebral homeostasis: synaptic plasticity, neurogenesis, andphosphorylation of tau protein. Microglia is known for its importance in neuropathologies. However, under physiological conditions, such immune cells interact actively with neurons, being able to modulate the fate and functions of the synapses. Such ability of microglial cells suggests the consequences of changes in microglial phenotype under pathological conditions, which makes it relevant to understand the interaction between microglial and other developing brain cells and their influence on the formation of neuronal and synaptic networks. The current work aims to identify the main pathway of neuronal-glia integration activated by chronic treatment with lithium (0.02mM; 0.2mM and 2mM) in hippocampal neurons, exploring the use of bioinformatics tools in microarray data. Treatment of primary hippocampal neurons with lithium changed the genes related to different neuroprotection pathwaysat the highest therapeutic dose (2mM). There was dissociation between the therapeutic and sub therapeutic dose of lithium in neuroprotection. Therefore, treatment at therapeutic doses (2mM) modified different signaling pathways when compared to the sub-therapeutic dose (0.02 and 0.2mM)

    Influence of lithium in neuron-glia interaction in hippocampal neurons: preliminary study

    Get PDF
    Recentemente, especial atenção foi dada aos possíveis efeitos neuroprotetores do lítio, especialmente pela descoberta de seus efeitos regulatórios sobre proteínas pró e anti-apoptóticas. O lítio aumenta substancialmente a expressão de proteínas citoprotetoras no sistema nervoso central, tanto no córtex de ratos quanto em células humanas de origem neuronal. Além de ações neuroprotetoras, auxilia na regeneração de axônios no sistema nervoso central de mamíferos. O lítio regula negativamente a expressão e a atividade de enzimas que exercem funções importantes na homeostase cerebral: plasticidade sináptica, neurogênese e fosforilação da proteína tau. Microglia é conhecida por sua importância na neuropatologia. No entanto, sob condições fisiológicas, tais células imunes interagem ativamente com os neurônios, sendo capazes de modular o destino e as funções das sinapses. Essa capacidade das células microgliais sugere as conseqüências de mudanças no fenótipo microglial sob condições patológicas, o que torna relevante o entendimento da interação entre micróglia e outras células cerebrais em desenvolvimento e sua influência na formação de redes neuronais e sinápticas. O presente trabalho tem como objetivo identificar a principal via de integração neurônio-glia ativada pelo tratamento crônico com lítio em neurônios, explorando o uso de ferramentas de bioinformática em dados de microarray. O tratamento de neurônios hipocampais com lítio alterou os genes relacionados a diferentes vias de neuroproteção na dose terapêutica mais alta. Houve dissociação entre a dose terapêutica e sub-terapêutica de lítio na neuroproteção. Portanto, o tratamento em doses terapêuticas (2mM) modificou diferentes vias de sinalização quando comparado com as doses sub-terapêuticas (0,02 e 0,2mM).Recently, special attention has been given to the possible neuroprotective effects of lithium, especially by the discovery of its regulatory effects on pro and anti-apoptotic proteins. Lithium substantially increases the cytoprotective proteins expression in the central nervous system, both in rat cortex and in human cells of neuronal origin. In addition to neuroprotective actions, it aids in the regeneration of axons in the central nervous system of mammals. Lithium negatively regulates the expression and activity of enzymes that exert important functions in cerebral homeostasis: synaptic plasticity, neurogenesis, and phosphorylation of tau protein. Microglia is known for its importance in neuropathology. However, under physiological conditions, such immune cells interact actively with neurons, being able to modulate the fate and functions of the synapses. Such ability of microglial cells suggests the consequences of changes in microglial phenotype under pathological conditions, which makes it relevant to understand the interaction between microglial and other developing brain cells and their influence on the formation of neuronal and synaptic networks. The current work aims to identify the main pathway of neuronal-glia integration activated by chronic treatment with lithium in neurons, exploring the use of bioinformatics tools in microarray data. Treatment of primary hippocampal neurons with lithium changed the genes related to different neuroprotection pathways at the highest therapeutic dose. There was dissociation between the therapeutic and sub-therapeutic dose of lithium in neuroprotection. Therefore, treatment at therapeutic doses (2mM) modified different signaling pathways when compared to the sub-therapeutic dose (0.02 and 0.2mM)
    corecore