11 research outputs found

    New Insights into the Apoptotic Process in Mollusks: Characterization of Caspase Genes in Mytilus galloprovincialis

    Get PDF
    Apoptosis is an essential biological process in the development and maintenance of immune system homeostasis. Caspase proteins constitute the core of the apoptotic machinery and can be categorized as either initiators or effectors of apoptosis. Although the genes encoding caspase proteins have been described in vertebrates and in almost all invertebrate phyla, there are few reports describing the initiator and executioner caspases or the modulation of their expression by different stimuli in different apoptotic pathways in bivalves. In the present work, we characterized two initiator and four executioner caspases in the mussel Mytilus galloprovincialis. Both initiators and executioners showed structural features that make them different from other caspase proteins already described. Evaluation of the genes’ tissue expression patterns revealed extremely high expression levels within the gland and gills, where the apoptotic process is highly active due to the clearance of damaged cells. Hemocytes also showed high expression values, probably due to of the role of apoptosis in the defense against pathogens. To understand the mechanisms of caspase gene regulation, hemocytes were treated with UV-light, environmental pollutants and pathogen-associated molecular patterns (PAMPs) and apoptosis was evaluated by microscopy, flow cytometry and qPCR techniques. Our results suggest that the apoptotic process could be tightly regulated in bivalve mollusks by overexpression/suppression of caspase genes; additionally, there is evidence of caspase-specific responses to pathogens and pollutants. The apoptotic process in mollusks has a similar complexity to that of vertebrates, but presents unique features that may be related to recurrent exposure to environmental changes, pollutants and pathogens imposed by their sedentary nature

    Monoclonal antibodies against sporangia and spores of Marteilia sp. (Protozoa: Ascetospora)

    Get PDF
    Digestive glands of mussels Mytilus edulis from Brittany, France, infected with Marteilia sp. (Ascetospora) were used to purify the parasite. A modification of a previously used purification protocol increased purification efficiency, permitting sporangial primordia and sporangia of Marteilia sp. to be obtained. Mouse (Balb/c) monoclonal antibodies were generated against this parasite. From the fusion, 26 monoclonal antibodies against Marteilia sp. were obtained. Antibodies from 6 clones reacted only with Marteilia sp. cells and not with normal host tissues. Four of these antibodies (1/1-3, 3/1-1, 4/1-1 and 6/2-3) reacted with the sporangia wall and two with the spore cytoplasm (9/1-1 and 12/5-1). Antibodies cross-reacted with Marteilia refringens from Mytilus galloprovincialis obtained in the Ria de Vigo, Spain

    Using molecular markers to investigate genetic diversity, mating system and gene flow of Neotropical trees

    No full text
    corecore