57,417 research outputs found

    Testing the bus guardian unit of the FTMP

    Get PDF
    Fault-tolerant multiprocessor (FTMP) operation is discussed. Fault-modeling in the bus guardian units (BGUs) is covered. Testing the BGU is discussed. A testing algorithm is proposed

    Single wall penetration equations

    Get PDF
    Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests

    Children's suggestibility in relation to their understanding about sources of knowledge

    Get PDF
    In the experiments reported here, children chose either to maintain their initial belief about an object's identity or to accept the experimenter's contradicting suggestion. Both 3– to 4–year–olds and 4– to 5–year–olds were good at accepting the suggestion only when the experimenter was better informed than they were (implicit source monitoring). They were less accurate at recalling both their own and the experimenter's information access (explicit recall of experience), though they performed well above chance. Children were least accurate at reporting whether their final belief was based on what they were told or on what they experienced directly (explicit source monitoring). Contrasting results emerged when children decided between contradictory suggestions from two differentially informed adults: Three– to 4–year–olds were more accurate at reporting the knowledge source of the adult they believed than at deciding which suggestion was reliable. Decision making in this observation task may require reflective understanding akin to that required for explicit source judgments when the child participates in the task

    Development of EHD Ion-Drag Micropump for Microscale Electronics Cooling Systems

    Get PDF
    In this investigation, the numerical simulation of electrohydrodynamic (EHD) ion-drag micropumps with micropillar electrode geometries have been performed. The effect of micropillar height and electrode spacing on the performance of the micropumps was investigated. The performance of the EHD micropump improved with increased applied voltage and decreased electrode spacing. The optimum micropillar height for the micropump with electrode spacing of 40Ό\mum and channel height of 100Ό\mum at 200V was 40Ό\mum, where a maximum mass flow rate of 0.18g/min was predicted. Compared to that of planar electrodes, the 3D micropillar electrode geometry enhanced the overall performance of the EHD micropumps.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Review of current interest and research in water hyacinth-based wastewater treatment

    Get PDF
    The status of activity in the user community for water hyacinth-based wastewater treatment was evaluated. The principal technique used was that of interviewing people who either (1) were known to be engaged in hyacinth research or development or (2) had made inquiry to NASA about hyacinth systems. About 40 non-research organizations and a similar number of research organizations were contacted. As a result of the interviews and a review of the relevant literature, it was concluded that hyacinth systems have the potential for providing a lower cost way for small cities to meet increasingly stringent effluent requirements. A limited amount of full-scale demonstration of hyacinth systems has been carried out during the past two years, but the yield of design data has been small. Several organizations are currently planning construction of experimental full-scale hyacinth-based wastewater treatment systems during 1977-1978

    Evaluation of the SPAR thermal analyzer on the CYBER-203 computer

    Get PDF
    The use of the CYBER 203 vector computer for thermal analysis is investigated. Strengths of the CYBER 203 include the ability to perform, in vector mode using a 64 bit word, 50 million floating point operations per second (MFLOPS) for addition and subtraction, 25 MFLOPS for multiplication and 12.5 MFLOPS for division. The speed of scalar operation is comparable to that of a CDC 7600 and is some 2 to 3 times faster than Langley's CYBER 175s. The CYBER 203 has 1,048,576 64-bit words of real memory with an 80 nanosecond (nsec) access time. Memory is bit addressable and provides single error correction, double error detection (SECDED) capability. The virtual memory capability handles data in either 512 or 65,536 word pages. The machine has 256 registers with a 40 nsec access time. The weaknesses of the CYBER 203 include the amount of vector operation overhead and some data storage limitations. In vector operations there is a considerable amount of time before a single result is produced so that vector calculation speed is slower than scalar operation for short vectors

    A review of quasi-coherent structures in a numerically simulated turbulent boundary layer

    Get PDF
    Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated

    Effects of T=0 two body matrix elements on M1 and Gamow-Teller transitions: isospin decomposition

    Full text link
    We perform calculations for M1 transitions and allowed Gamow Teller (GT) transitions in the even-even Titanium isotopes - 44^{44}Ti, 46^{46}Ti, and 48^{48}Ti. We first do calculations with the FPD6 interaction. Then to study the effect of T=0 matrix elements on the M1 and GT rates we introduce a second interaction in which all the T=0 matrix elements are set equal to zero and a third in which all the T=0 matrix elements are set to a constant. For the latter two interactions the T=1 matrix elements are the same as for FPD6. We are thus able to study the effects of the fluctuating T=0 matrix elements on M1 and GT rates

    Contesting density: beyond nimby-ism and usual suspects in governing the future city

    Get PDF
    Density is often a major focus of contestation in imagining the future city. The built form of the future city, including its height and density, is a crystallization of current and projected urban growth, as well as a realization of policy ambitions. However, also determinant of future built form are present capacities to extract value from urban development, on the part of both private and public actors. This tight ‘nexus’ of concerns and interests drives the specific heights, densities and public space provision of the future city. This paper considers, on what grounds today’s urban residents might be drawn into a battle for the quality of the future city

    (Chloromethyl)pentacarbonylmanganese(I): a crystal structure with a non-crystallographic centre of symmetry

    Get PDF
    There are two molecules in the asymmetric unit of the P2₁/c unit cell of ClCH₂Mn(CO)₅, the first halomethyl complex of manganese to be structurally determined. The molecules are crystallographically independent, despite an apparent local centre of symmetry. The average bond parameters include Mn–Calkyl 2.128(8) Å, C–Cl 1.811(8) Å and Mn–C–Cl 116.4(4)
    • 

    corecore