1,048 research outputs found

    Understanding citizen science and environmental monitoring: final report on behalf of UK Environmental Observation Framework

    Get PDF
    Citizen science can broadly be defined as the involvement of volunteers in science. Over the past decade there has been a rapid increase in the number of citizen science initiatives. The breadth of environmental-based citizen science is immense. Citizen scientists have surveyed for and monitored a broad range of taxa, and also contributed data on weather and habitats reflecting an increase in engagement with a diverse range of observational science. Citizen science has taken many varied approaches from citizen-led (co-created) projects with local community groups to, more commonly, scientist-led mass participation initiatives that are open to all sectors of society. Citizen science provides an indispensable means of combining environmental research with environmental education and wildlife recording. Here we provide a synthesis of extant citizen science projects using a novel cross-cutting approach to objectively assess understanding of citizen science and environmental monitoring including: 1. Brief overview of knowledge on the motivations of volunteers. 2. Semi-systematic review of environmental citizen science projects in order to understand the variety of extant citizen science projects. 3. Collation of detailed case studies on a selection of projects to complement the semi-systematic review. 4. Structured interviews with users of citizen science and environmental monitoring data focussing on policy, in order to more fully understand how citizen science can fit into policy needs. 5. Review of technology in citizen science and an exploration of future opportunities

    Uniqueness Theorem for Generalized Maxwell Electric and Magnetic Black Holes in Higher Dimensions

    Full text link
    Based on the conformal energy theorem we prove the uniqueness theorem for static higher dimensional electrically and magnetically charged black holes being the solution of Einstein (n-2)-gauge forms equations of motion. Black hole spacetime contains an asymptotically flat spacelike hypersurface with compact interior and non-degenerate components of the event horizon.Comment: 7 pages, RevTex, to be published in Phys.Rev.D1

    U(2)-like Flavor Symmetries and Approximate Bimaximal Neutrino Mixing

    Get PDF
    Models involving a U(2) flavor symmetry, or any of a number of its non-Abelian discrete subgroups, can explain the observed hierarchy of charged fermion masses and CKM angles. It is known that a large neutrino mixing angle connecting second and third generation fields may arise via the seesaw mechanism in these models, without a fine tuning of parameters. Here we show that it is possible to obtain approximate bimaximal mixing in a class of models with U(2)-like Yukawa textures. We find a minimal form for Dirac and Majorana neutrino mass matrices that leads to two large mixing angles, and show that our result can quantitatively explain atmospheric neutrino oscillations while accommodating the favored, large angle MSW solution to the solar neutrino problem. We demonstrate that these textures can arise in models by presenting a number of explicit examples.Comment: 20 pages RevTex4, 2 figure

    Maximal Neutrino Mixing from a Minimal Flavor Symmetry

    Get PDF
    We study a number of models, based on a non-Abelian discrete group, that successfully reproduce the simple and predictive Yukawa textures usually associated with U(2) theories of flavor. These models allow for solutions to the solar and atmospheric neutrino problems that do not require altering successful predictions for the charged fermions or introducing sterile neutrinos. Although Yukawa matrices are hierarchical in the models we consider, the mixing between second- and third-generation neutrinos is naturally large. We first present a quantitative analysis of a minimal model proposed in earlier work, consisting of a global fit to fermion masses and mixing angles, including the most important renormalization group effects. We then propose two new variant models: The first reproduces all important features of the SU(5)xU(2) unified theory with neither SU(5) nor U(2). The second demonstrates that discrete subgroups of SU(2) can be used in constructing viable supersymmetric theories of flavor without scalar universality even though SU(2) by itself cannot.Comment: 34 pages LaTeX, 1 eps figure, minor revisions and references adde

    Mechanical ventilation alters airway nucleotides and purinoceptors in lung and extrapulmonary organs

    Get PDF
    Extracellular nucleotides are stress-responsive ligands that mediate a variety of cellular processes via purinoceptors. We hypothesized that mechanical ventilation (MV) would alter the extracellular adenyl-nucleotide profile and purinoceptor expression in lung and extrapulmonary tissues. Twenty-eight rats were randomized to: (i) unventilated control animals; (ii) tidal volume (V T; 6 ml/kg); (iii) VT (6 ml/kg) and positive end-expiratory pressure (PEEP; 5 cm H2O); (iv) VT (12 ml/kg); or (v) VT (12 ml/kg) and PEEP (5 cm H2O). Bronchoalveolar lavage (BAL) was analyzed for adenyl-nucleotides. Pulmonary, hepatic, and renal tissues were assessed for P2Y4, P 2Y6, P2X7, A3, and A 2b receptor expression by real-time reverse transcriptase-polymerase chain reaction and Fas/Fas ligand mRNA was quantified in the lung. MV produced volume-dependent changes in BAL nucleotides; AMP and adenosine increased, whereas ATP and ADP proportions decreased. Large-volume MV increased A 2b mRNA and decreased P2X7 in the lung; mRNA changes in lung Fas ligand paralleled P2X7. PEEP normalized BAL nucleotide profiles and A2b expression. Injurious MV reduced hepatic and renal P2X7 mRNA; PEEP normalized these levels in both tissues. Large-volume MV also decreased renal A2b mRNA. MV alters the BAL adenyl-nucleotide profile and purinoceptor patterns in lung, liver, and kidney. PEEP normalizes the BAL nucleotide profile and receptor patterns in lung and extrapulmonary tissues

    Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    Full text link
    Observations have established that extremely compact, massive objects are common in the universe. It is generally accepted that these objects are black holes. As observations improve, it becomes possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or with gravitational-waves) and to test whether they have the characteristics of black hole orbits in general relativity. Such measurements can be used to map the spacetime of a massive compact object, testing whether the object's multipoles satisfy the strict constraints of the black hole hypothesis. Such a test requires that we compare against objects with the ``wrong'' multipole structure. In this paper, we present tools for constructing bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. The spacetimes which we present are good deep into the strong field of the object -- we do not use a large r expansion, except to make contact with weak field intuition. Also, our spacetimes reduce to the black hole spacetimes of general relativity when the ``bumpiness'' is set to zero. We propose bumpy black holes as the foundation for a null experiment: if black hole candidates are the black holes of general relativity, their bumpiness should be zero. By comparing orbits in a bumpy spacetime with those of an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are the black holes of general relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR

    The Myth of the Angry Atheist

    Get PDF
    Atheists are often portrayed in the media and elsewhere as angry individuals. Although atheists disagree with the pillar of many religions, namely the existence of a God, it may not necessarily be the case that they are angry individuals. The prevalence and accuracy of angry-atheist perceptions were examined in 7 studies with 1,677 participants from multiple institutions and locations in the United States. Studies 1–3 revealed that people believe atheists are angrier than believers, people in general, and other minority groups, both explicitly and implicitly. Studies 4–7 then examined the accuracy of these beliefs. Belief in God, state anger, and trait anger were assessed in multiple ways and contexts. None of these studies supported the idea that atheists are particularly angry individuals. Rather, these results support the idea that people believe atheists are angry individuals, but they do not appear to be angrier than other individuals in reality

    Identification of novel nitroreductases from Bacillus cereus and their interaction with the CB1954 prodrug

    Get PDF
    Directed enzyme prodrug therapy is a form of cancer chemotherapy in which bacterial prodrug-activating enzymes, or their encoding genes, are directed to the tumour before administration of a prodrug. The prodrug can then be activated into a toxic drug at the tumour site, reducing off-target effects. The bacterial nitroreductases are a class of enzymes used in this therapeutic approach and although very promising, the low turnover rate of prodrug by the most studied nitroreductase enzyme, NfnB from Escherichia coli (NfnB_Ec), is a major limit to this technology. There is a continual search for enzymes with greater efficiency, and as part of the search for more efficient bacterial nitroreductase enzymes, two novel enzymes from Bacillus cereus (strain ATCC 14579) have been identified and shown to reduce the CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) prodrug to its respective 2�-and 4�-hydroxylamine products. Both enzymes shared features characteristic of the nitro-FMN-reductase superfamily including non-covalently associated FMN, requirement for the NAD(P)H cofactor, homodimeric, could be inhibited by Dicoumarol (3,3�-methylenebis(4-hydroxy-2H-chromen-2-one)), and displayed ping pong bi bi kinetics. Based on the biochemical characteristics and nucleotide alignment with other nitroreductase enzymes, one enzyme was named YdgI_Bc and the other YfkO_Bc. Both B. cereus enzymes had greater turnover for the CB1954 prodrug compared with NfnB_Ec, and in the presence of added NADPH cofactor, YfkO_Bc had superior cell killing ability, and produced mainly the 4�-hydroxylamine product at low prodrug concentration. The YfkO_Bc was identified as a promising candidate for future enzyme prodrug therapy
    corecore