5,388 research outputs found
Linking Snake Behavior to Nest Predation in a Midwestern Bird Community
Nest predators can adversely affect the viability of songbird populations, and their impact is exacerbated in fragmented habitats. Despite substantial research on this predator-prey interaction, however, almost all of the focus has been on the birds rather than their nest predators, thereby limiting our understanding of the factors that bring predators and nests into contact. We used radiotelemetry to document the activity of two snake species (rat snakes, Elaphe obsoleta; racers, Coluber constrictor) known to prey on nests in Midwestern bird communities and simultaneously monitored 300 songbird nests and tested the hypothesis that predation risk should increase for nests when snakes were more active and in edge habitat preferred by both snake species. Predation risk increased when rat snakes were more active, for all nests combined and for two of the six bird species for which we had sufficient nests to allow separate analyses. This result is consistent with rat snakes being more important nest predators than racers. We found no evidence, however, that nests closer to forest edges were at greater risk. These results are generally consistent with the one previous study that investigated rat snakes and nest predation simultaneously. The seemingly paradoxical failure to find higher predation risk in the snakes\u27 preferred habitat (i.e., edge) might be explained by the snakes using edges at least in part for non-foraging activities. We propose that higher nest predation in fragmented habitats (at least that attributable to snakes) results indirectly from edges promoting larger snake populations, rather than from edges directly increasing the risk of nest predation by snakes. If so, the notion of edges per se functioning as ecological traps merits further study
Geophysical Imaging of Watershed Subsurface Patterns and Prediction of Soil Texture and Water Holding Capacity
The spatial distribution of subsurface soil textural properties across the landscape is an important control on the hydrological and ecological function of a watershed. Traditional methods of mapping soils involving subjective assignment of soil boundaries are inadequate for studies requiring a quantitative assessment of the landscape and its subsurface connectivity and storage capacity. Geophysical methods such as electromagnetic induction (EMI) provide the possibility of obtaining high-resolution images across a landscape to identify subtle changes in subsurface soil patterns. In this work we show how EMI can be used to image the subsurface of a ∼38 ha watershed. We present an imaging approach using kriging to interpolate and sequential Gaussian simulation to estimate the uncertainty in the maps. We also explore the idea of difference ECa mapping to try to exploit changes in soil moisture to identify more hydrologically active locations. In addition, we use a digital elevation model to identify flow paths and compare these with the ECa measurement as a function of distance. Finally, we perform a more traditional calibration of ECa with clay percentage across the watershed and determine soil water holding capacity (SWHC). The values of SWHC range from 0.07 to 0.22 m3 m−3 across the watershed, which contrast with the uniform value of 0.13 derived from the traditional soil survey maps. Additional work is needed to appropriately interpret and incorporate EMI data into hydrological studies; however, we argue that there is considerable merit in identifying subsurface soil patterns from these geophysical images
The extinct, giant giraffid Sivatherium giganteum: skeletal reconstruction and body mass estimation
Sivatherium giganteum is an extinct giraffid from the Plio–Pleistocene boundary of the Himalayan foothills. To date, there has been no rigorous skeletal reconstruction of this unusual mammal. Historical and contemporary accounts anecdotally state that Sivatherium rivalled the African elephant in terms of its body mass, but this statement has never been tested. Here, we present a three-dimensional composite skeletal reconstruction and calculate a representative body mass estimate for this species using a volumetric method. We find that the estimated adult body mass of 1246 kg (857—1812 kg range) does not approach that of an African elephant, but confirms that Sivatherium was certainly a large giraffid, and may have been the largest ruminant mammal that has ever existed. We contrast this volumetric estimate with a bivariate scaling estimate derived from Sivatherium's humeral circumference and find that there is a discrepancy between the two. The difference implies that the humeral circumference of Sivatherium is greater than expected for an animal of this size, and we speculate this may be linked to a cranial shift in centre of mass
The preparation and characterisation of monomeric and linked metal carbonyl clusters containing the closo-Si2Co4 pseudo-octahedral core
PhSiH3 reacts with [Co₄(CO)₁₂] at 50 °C in hydrocarbon solvents to give [(µ₄-SiPh)₂Co₄(CO)₁₁], 2c, shown by an X-ray crystal structure determination to have a pseudo-octahedral Si₂Co₄ core. Substituted aryl-silanes behaved similarly. Mixtures of PhSiH₃, H₃SiC₆H₄SiH₃ and [Co₄(CO)₁₂] in a ca. 2 1 2 ratio gave the dimeric cluster [{Co₄(µ₄-SiPh)(CO)₁₁Si}₂C₆H₄], 3a, which has the two Si₂Co₄ cores linked by a C₆H₄ group to give a rigid molecule which an X-ray structure analysis shows to be over 23 Å long. Related dimers linked by –(CH₂)₈– groups were isolated from mixtures of PhSiH₃, α ,ω-(H₃Si)₂(CH₂)₈ and [Co₄(CO)₁₂]. Electrochemical studies show the two cluster units in 3a do not interact electronically
Social and Behavioral Implications of National Collegiate Athletic Association Sickle Cell Trait Screening: The Athletes\u27 Perspective
Background: In August 2010, the National Collegiate Athletic Association (NCAA) implemented a policy mandating sickle cell trait (SCT) testing for all Division I collegiate athletes. Subsequently, all Division II-III athletes were also compelled to undergo SCT testing. This decision has met with controversy among healthcare providers, researchers, and sickle cell advocates. However, there is little information concerning the athletes’ perspective of this policy. The purpose of this paper is to report the findings of a qualitative study that explored college athletes’ perceptions of sickle cell trait SCT, NCAA policies on SCT testing, and potential implications of SCT screening.
Methods: The participants were eighteen male and female athletes (ages 18-24), members of NCAA-governed teams who were on the study campus from April-August 2010. Athletes participated in focus groups that gathered their perceptions of the SCT, the NCAA SCT policy, and social and behavioral implications of a SCT diagnosis.
Results: Athletes lacked knowledge of the SCT and the implications of a positive screening test result, desired health education about SCT, were conflicted about sharing health information, and feared loss of playing time if found to carry the SCT.
Conclusions: The study revealed athletes’ perceptions of the SCT and mandated NCAA SCT testing that should be addressed by college health professionals
Social and Behavioral Implications of National Collegiate Athletic Association Sickle Cell Trait Screening: The Athletes’ Perspective
Background: In August 2010, the National Collegiate Athletic Association (NCAA) implemented a policy mandating sickle cell trait (SCT) testing for all Division I collegiate athletes. Subsequently, all Division II-III athletes were also compelled to undergo SCT testing. This decision has met with controversy among healthcare providers, researchers, and sickle cell advocates. However, there is little information concerning the athletes’ perspective of this policy. The purpose of this paper is to report the findings of a qualitative study that explored college athletes’ perceptions of sickle cell trait SCT, NCAA policies on SCT testing, and potential implications of SCT screening.
Methods: The participants were eighteen male and female athletes (ages 18-24), members of NCAA-governed teams who were on the study campus from April-August 2010. Athletes participated in focus groups that gathered their perceptions of the SCT, the NCAA SCT policy, and social and behavioral implications of a SCT diagnosis.
Results: Athletes lacked knowledge of the SCT and the implications of a positive screening test result, desired health education about SCT, were conflicted about sharing health information, and feared loss of playing time if found to carry the SCT.
Conclusions: The study revealed athletes’ perceptions of the SCT and mandated NCAA SCT testing that should be addressed by college health professionals
Submillimeter Observations of the Ultraluminous BAL Quasar APM 08279+5255
With an inferred bolometric luminosity of 5\times10^{15}{\rm \lsun}, the
recently identified z=3.87, broad absorption line quasar APM 08279+5255 is
apparently the most luminous object currently known. As half of its prodigious
emission occurs in the infrared, APM 08279+5255 also represents the most
extreme example of an Ultraluminous Infrared Galaxy. Here, we present new
submillimeter observations of this phenomenal object; while indicating that a
vast quantity of dust is present, these data prove to be incompatible with
current models of emission mechanisms and reprocessing in ultraluminous
systems. The influence of gravitational lensing upon these models is considered
and we find that while the emission from the central continuum emitting region
may be significantly enhanced, lensing induced magnification cannot easily
reconcile the models with observations. We conclude that further modeling,
including the effects of any differential magnification is required to explain
the observed emission from APM 08279+5255.Comment: 12 Pages with Two figures. Accepted for publication in the
Astrophysical Journal Letter
The Distribution of Redshifts in New Samples of Quasi-stellar Objects
Two new samples of QSOs have been constructed from recent surveys to test the
hypothesis that the redshift distribution of bright QSOs is periodic in
. The first of these comprises 57 different redshifts among all
known close pairs or multiple QSOs, with image separations 10\arcsec,
and the second consists of 39 QSOs selected through their X-ray emission and
their proximity to bright comparatively nearby active galaxies. The redshift
distributions of the samples are found to exhibit distinct peaks with a
periodic separation of in identical to that claimed
in earlier samples but now extended out to higher redshift peaks and 4.47, predicted by the formula but never seen before. The periodicity
is also seen in a third sample, the 78 QSOs of the 3C and 3CR catalogues. It is
present in these three datasets at an overall significance level -
, and appears not to be explicable by spectroscopic or similar
selection effects. Possible interpretations are briefly discussed.Comment: submitted for publication in the Astronomical Journal, 15 figure
Identification of a Novel Staphylococcus aureus Two-Component Leukotoxin Using Cell Surface Proteomics
Staphylococcus aureus is a prominent human pathogen and leading
cause of bacterial infection in hospitals and the community.
Community-associated methicillin-resistant S. aureus (CA-MRSA)
strains such as USA300 are highly virulent and, unlike hospital strains, often
cause disease in otherwise healthy individuals. The enhanced virulence of
CA-MRSA is based in part on increased ability to produce high levels of secreted
molecules that facilitate evasion of the innate immune response. Although
progress has been made, the factors that contribute to CA-MRSA virulence are
incompletely defined. We analyzed the cell surface proteome (surfome) of USA300
strain LAC to better understand extracellular factors that contribute to the
enhanced virulence phenotype. A total of 113 identified proteins were associated
with the surface of USA300 during the late-exponential phase of growth
in vitro. Protein A was the most abundant surface molecule
of USA300, as indicated by combined Mascot score following analysis of peptides
by tandem mass spectrometry. Unexpectedly, we identified a previously
uncharacterized two-component leukotoxin–herein named LukS-H and
LukF-G (LukGH)-as two of the most abundant surface-associated proteins of
USA300. Rabbit antibody specific for LukG indicated it was also freely secreted
by USA300 into culture media. We used wild-type and isogenic
lukGH deletion strains of USA300 in combination with human
PMN pore formation and lysis assays to identify this molecule as a leukotoxin.
Moreover, LukGH synergized with PVL to enhance lysis of human PMNs in
vitro, and contributed to lysis of PMNs after phagocytosis. We
conclude LukGH is a novel two-component leukotoxin with cytolytic activity
toward neutrophils, and thus potentially contributes to S.
aureus virulence
Mining Public Domain Data to Develop Selective DYRK1A Inhibitors
Kinases represent one of the most intensively pursued groups of targets in modern-day drug discovery. Often it is desirable to achieve selective inhibition of the kinase of interest over the remaining ∼500 kinases in the human kinome. This is especially true when inhibitors are intended to be used to study the biology of the target of interest. We present a pipeline of open-source software that analyzes public domain data to repurpose compounds that have been used in previous kinase inhibitor development projects. We define the dual-specificity tyrosine-regulated kinase 1A (DYRK1A) as the kinase of interest, and by addition of a single methyl group to the chosen starting point we remove glycogen synthase kinase β (GSK3β) and cyclin-dependent kinase (CDK) inhibition. Thus, in an efficient manner we repurpose a GSK3β/CDK chemotype to deliver 8b, a highly selective DYRK1A inhibitor
- …