4 research outputs found
What factors underlie children's susceptibility to semantic and phonological false memories? Investigating the roles of language skills and auditory short-term memory
Two experiments investigated the cognitive skills that underlie children's susceptibility to semantic and phonological false memories in the Deese/Roediger-McDermott procedure (Deese, 1959; Roediger & McDermott, 1995). In Experiment 1, performance on the Verbal Similarities subtest of the British Ability Scales (BAS) II (Elliott, Smith, & McCulloch, 1997) predicted correct and false recall of semantic lures. In Experiment 2, performance on the Yopp-Singer Test of Phonemic Segmentation (Yopp, 1988) did not predict correct recall, but inversely predicted the false recall of phonological lures. Auditory short-term memory was a negative predictor of false recall in Experiment 1, but not in Experiment 2. The findings are discussed in terms of the formation of gist and verbatim traces as proposed by fuzzy trace theory (Reyna & Brainerd, 1998) and the increasing automaticity of associations as proposed by associative activation theory (Howe, Wimmer, Gagnon, & Plumpton, 2009). © 2014 Elsevier B.V
Synergies between interstellar dust and heliospheric science with an Interstellar Probe
We discuss the synergies between heliospheric and dust science, the open
science questions, the technological endeavors and programmatic aspects that
are important to maintain or develop in the decade to come. In particular, we
illustrate how we can use interstellar dust in the solar system as a tracer for
the (dynamic) heliosphere properties, and emphasize the fairly unexplored, but
potentially important science question of the role of cosmic dust in
heliospheric and astrospheric physics. We show that an Interstellar Probe
mission with a dedicated dust suite would bring unprecedented advances to
interstellar dust research, and can also contribute-through measuring dust - to
heliospheric science. This can, in particular, be done well if we work in
synergy with other missions inside the solar system, thereby using multiple
vantage points in space to measure the dust as it `rolls' into the heliosphere.
Such synergies between missions inside the solar system and far out are crucial
for disentangling the spatially and temporally varying dust flow. Finally, we
highlight the relevant instrumentation and its suitability for contributing to
finding answers to the research questions.Comment: 18 pages, 7 Figures, 5 Tables. Originally submitted as white paper
for the National Academies Decadal Survey for Solar and Space Physics
2024-203
Lunar Volatiles and Solar System Science
Understanding the origin and evolution of the lunar volatile system is not
only compelling lunar science, but also fundamental Solar System science. This
white paper (submitted to the US National Academies' Decadal Survey in
Planetary Science and Astrobiology 2023-2032) summarizes recent advances in our
understanding of lunar volatiles, identifies outstanding questions for the next
decade, and discusses key steps required to address these questions