6,023 research outputs found
Betti number signatures of homogeneous Poisson point processes
The Betti numbers are fundamental topological quantities that describe the
k-dimensional connectivity of an object: B_0 is the number of connected
components and B_k effectively counts the number of k-dimensional holes.
Although they are appealing natural descriptors of shape, the higher-order
Betti numbers are more difficult to compute than other measures and so have not
previously been studied per se in the context of stochastic geometry or
statistical physics.
As a mathematically tractable model, we consider the expected Betti numbers
per unit volume of Poisson-centred spheres with radius alpha. We present
results from simulations and derive analytic expressions for the low intensity,
small radius limits of Betti numbers in one, two, and three dimensions. The
algorithms and analysis depend on alpha-shapes, a construction from
computational geometry that deserves to be more widely known in the physics
community.Comment: Submitted to PRE. 11 pages, 10 figure
Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism
Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning â version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio
Stability of continuously pumped atom lasers
A multimode model of a continuously pumped atom laser is shown to be unstable
below a critical value of the scattering length. Above the critical scattering
length, the atom laser reaches a steady state, the stability of which increases
with pumping. Below this limit the laser does not reach a steady state. This
instability results from the competition between gain and loss for the excited
states of the lasing mode. It will determine a fundamental limit for the
linewidth of an atom laser beam.Comment: 4 page
Quantum tunneling dynamics of an interacting Bose-Einstein condensate through a Gaussian barrier
The transmission of an interacting Bose-Einstein condensate incident on a
repulsive Gaussian barrier is investigated through numerical simulation. The
dynamics associated with interatomic interactions are studied across a broad
parameter range not previously explored. Effective 1D Gross-Pitaevskii equation
(GPE) simulations are compared to classical Boltzmann-Vlasov equation (BVE)
simulations in order to isolate purely coherent matterwave effects. Quantum
tunneling is then defined as the portion of the GPE transmission not described
by the classical BVE. An exponential dependence of transmission on barrier
height is observed in the purely classical simulation, suggesting that
observing such exponential dependence is not a sufficient condition for quantum
tunneling. Furthermore, the transmission is found to be predominately described
by classical effects, although interatomic interactions are shown to modify the
magnitude of the quantum tunneling. Interactions are also seen to affect the
amount of classical transmission, producing transmission in regions where the
non-interacting equivalent has none. This theoretical investigation clarifies
the contribution quantum tunneling makes to overall transmission in
many-particle interacting systems, potentially informing future tunneling
experiments with ultracold atoms.Comment: Close to the published versio
11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium
We present a narrow linewidth continuous laser source with over 11 Watts of
output power at 780nm, based on single-pass frequency doubling of an amplified
1560nm fibre laser with 36% efficiency. This source offers a combination of
high power, simplicity, mode quality and stability. Without any active
stabilization, the linewidth is measured to be below 10kHz. The fibre seed is
tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb,
providing a viable high-power source for laser cooling as well as for
large-momentum-transfer beamsplitters in atom interferometry. Sources of this
type will pave the way for a new generation of high flux, high duty-cycle
degenerate quantum gas experiments.Comment: 5 pages, 3 figure
A Bose-condensed, simultaneous dual species Mach-Zehnder atom interferometer
This paper presents the first realisation of a simultaneous Rb
-Rb Mach-Zehnder atom interferometer with Bose-condensed atoms. A number
of ambitious proposals for precise terrestrial and space based tests of the
Weak Equivalence Principle rely on such a system. This implementation utilises
hybrid magnetic-optical trapping to produce spatially overlapped condensates
with a duty cycle of 20s. A horizontal optical waveguide with co-linear Bragg
beamsplitters and mirrors is used to simultaneously address both isotopes in
the interferometer. We observe a non-linear phase shift on a non-interacting
Rb interferometer as a function of interferometer time, , which we
show arises from inter-isotope scattering with the co-incident Rb
interferometer. A discussion of implications for future experiments is given.Comment: 7 pages, 5 figures. The authors welcome comments and feedback on this
manuscrip
Classical noise and flux: the limits of multi-state atom lasers
By direct comparison between experiment and theory, we show how the classical
noise on a multi-state atom laser beam increases with increasing flux. The
trade off between classical noise and flux is an important consideration in
precision interferometric measurement. We use periodic 10 microsecond
radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein
condensate. The resulting atom laser beam has suprising structure which is
explained using three dimensional simulations of the five state
Gross-Pitaevskii equations.Comment: 4 pages, 3 figure
Characteristics of the velocity profile at tidal-stream energy sites
Realistic oceanographic conditions are essential to consider in the design of resilient tidal-stream energy devices that can make meaningful contributions to global emissions targets. Depth-averaged or simplified velocity profiles are often used in studies of device performance, or device interaction with the environment. We improve representation of flow at tidal-stream energy regions by characterising the velocity profile. At two potential tidal-stream energy sites, the 1/7th power-law with a bed-roughness coefficient of 0.4 accurately described the observed velocity profile on average (\u3e1 month ADCP deployments). Temporal variability in the power-law fit was found at both sites, and best characterised with Generalised Extreme Value distribution; with correlation of variability to tidal condition, wind speed and wave conditions found. The mean velocity profile was accurately simulated using a 3D hydrodynamic model (ROMS) of the Irish Sea (UK) but with temporal variability in accuracy of power-law fits. For all potential tidal sites, the spatial-mean velocity profile was also found to be similar (characterised with âŒ1/7th power-law and 0.4 bed-roughness value). Therefore realistic flow conditions can be characterised for tidal-energy research, but dynamically coupled wind-wave-tide models, or long-term observations, are needed to fully characterise velocity profile temporal variability
- âŠ