4,151 research outputs found

    Quantifying structure in networks

    Full text link
    We investigate exponential families of random graph distributions as a framework for systematic quantification of structure in networks. In this paper we restrict ourselves to undirected unlabeled graphs. For these graphs, the counts of subgraphs with no more than k links are a sufficient statistics for the exponential families of graphs with interactions between at most k links. In this framework we investigate the dependencies between several observables commonly used to quantify structure in networks, such as the degree distribution, cluster and assortativity coefficients.Comment: 17 pages, 3 figure

    Achieving peak brightness in an atom laser

    Get PDF
    In this paper we present experimental results and theory on the first continuous (long pulse) Raman atom laser. The brightness that can be achieved with this system is three orders of magnitude greater than has been previously demonstrated in any other continuously outcoupled atom laser. In addition, the energy linewidth of a continuous atom laser can be made arbitrarily narrow compared to the mean field energy of a trapped condensate. We analyze the flux and brightness of the atom laser with an analytic model that shows excellent agreement with experiment with no adjustable parameters.Comment: 4 pages, 4 black and white figures, submitted to Physical Revie

    Gradient echo memory in an ultra-high optical depth cold atomic ensemble

    Get PDF
    Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a 87^{87}Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F=2→Fâ€Č=3F=2 \rightarrow F'=3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of 80±280\pm 2% and coherence times up to 195 ÎŒ\mus, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.Comment: 15 pages, 5 figure

    Quantum tunneling dynamics of an interacting Bose-Einstein condensate through a Gaussian barrier

    Full text link
    The transmission of an interacting Bose-Einstein condensate incident on a repulsive Gaussian barrier is investigated through numerical simulation. The dynamics associated with interatomic interactions are studied across a broad parameter range not previously explored. Effective 1D Gross-Pitaevskii equation (GPE) simulations are compared to classical Boltzmann-Vlasov equation (BVE) simulations in order to isolate purely coherent matterwave effects. Quantum tunneling is then defined as the portion of the GPE transmission not described by the classical BVE. An exponential dependence of transmission on barrier height is observed in the purely classical simulation, suggesting that observing such exponential dependence is not a sufficient condition for quantum tunneling. Furthermore, the transmission is found to be predominately described by classical effects, although interatomic interactions are shown to modify the magnitude of the quantum tunneling. Interactions are also seen to affect the amount of classical transmission, producing transmission in regions where the non-interacting equivalent has none. This theoretical investigation clarifies the contribution quantum tunneling makes to overall transmission in many-particle interacting systems, potentially informing future tunneling experiments with ultracold atoms.Comment: Close to the published versio

    Optically guided linear Mach Zehnder atom interferometer

    Full text link
    We demonstrate a horizontal, linearly guided Mach Zehnder atom interferometer in an optical waveguide. Intended as a proof-of-principle experiment, the interferometer utilises a Bose-Einstein condensate in the magnetically insensitive |F=1,mF=0> state of Rubidium-87 as an acceleration sensitive test mass. We achieve a modest sensitivity to acceleration of da = 7x10^-4 m/s^2. Our fringe visibility is as high as 38% in this optically guided atom interferometer. We observe a time-of-flight in the waveguide of over half a second, demonstrating the utility of our optical guide for future sensors.Comment: 6 pages, 3 figures. Submitted to Phys. Rev.

    A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe
    • 

    corecore