25 research outputs found

    The analytic structure and the transcendental weight of the BFKL ladder at NLL accuracy

    Full text link
    We study some analytic properties of the BFKL ladder at next-to-leading logarithmic accuracy (NLLA). We use a procedure by Chirilli and Kovchegov to construct the NLO eigenfunctions, and we show that the BFKL ladder can be evaluated order by order in the coupling in terms of certain generalised single-valued multiple polylogarithms recently introduced by Schnetz. We develop techniques to evaluate the BFKL ladder at any loop order, and we present explicit results up to five loops. Using the freedom in defining the matter content of the NLO BFKL eigenvalue, we obtain conditions for the BFKL ladder in momentum space at NLLA to have maximal transcendental weight. We observe that, unlike in moment space, the result in momentum space in N = 4 SYM is not identical to the maximal weight part of QCD, and moreover that there is no gauge theory with this property. We classify the theories for which the BFKL ladder at NLLA has maximal weight in terms of their field content, and we find that these theories are highly constrained: there are precisely four classes of theories with this property involving only fundamental and adjoint matter, all of which have a vanishing one-loop beta function and a matter content that fits into supersymmetric multiplets. Our findings indicate that theories which have maximal weight are highly constrained and point to the possibility that there is a connection between maximal transcendental weight and superconformal symmetry.Comment: 45 pages, 1 figure, 1 table. v2: published versio

    Two-loop master integrals for a planar topology contributing to pp → tt‟j t\overline{t}j

    Get PDF
    We consider the case of a two-loop five-point pentagon-box integral configuration with one internal massive propagator that contributes to top-quark pair production in association with a jet at hadron colliders. We construct the system of differential equations for all the master integrals in a canonical form where the analytic form is reconstructed from numerical evaluations over finite fields. We find that the system can be represented as a sum of d-logarithmic forms using an alphabet of 71 letters. Using high precision boundary values obtained via the auxiliary mass flow method, a numerical solution to the master integrals is provided using generalised power series expansions

    Two-loop master integrals for a planar topology contributing to pp→ttˉjpp \rightarrow t\bar{t}j

    Full text link
    We consider the case of a two-loop five-point pentagon-box integral configuration with one internal massive propagator that contributes to top-quark pair production in association with a jet at hadron colliders. We construct the system of differential equations for all the master integrals in a canonical form where the analytic form is reconstructed from numerical evaluations over finite fields. We find that the system can be represented as a sum of d-logarithmic forms using an alphabet of 71 letters. Using high precision boundary values obtained via the auxiliary mass flow method, a numerical solution to the master integrals is provided using generalised power series expansions.Comment: 31 pages, 47 figures, ancillary material attached to the submission. Version v2 contains minor fixes and more reference

    Three-loop contributions to the ρ parameter and iterated integrals of modular forms

    Get PDF
    We compute fully analytic results for the three-loop diagrams involving two different massive quark flavours contributing to the ρ parameter in the Standard Model. We find that the results involve exactly the same class of functions that appears in the well-known sunrise and banana graphs, namely elliptic polylogarithms and iterated integrals of modular forms. Using recent developments in the understanding of these functions, we analytically continue all the iterated integrals of modular forms to all regions of the parameter space, and in each region we obtain manifestly real and fast-converging series expansions for these functions

    Genus Drop in Hyperelliptic Feynman Integrals

    Full text link
    The maximal cut of the nonplanar crossed box diagram with all massive internal propagators was long ago shown to encode a hyperelliptic curve of genus 3 in momentum space. Surprisingly, in Baikov representation, the maximal cut of this diagram only gives rise to a hyperelliptic curve of genus 2. To show that these two representations are in agreement, we identify a hidden involution symmetry that is satisfied by the genus 3 curve, which allows it to be algebraically mapped to the curve of genus 2. We then argue that this is just the first example of a general mechanism by means of which hyperelliptic curves in Feynman integrals can drop from genus gg to ⌈g/2⌉\lceil g/2 \rceil or ⌊g/2⌋\lfloor g/2 \rfloor, which can be checked for algorithmically. We use this algorithm to find further instances of genus drop in Feynman integrals.Comment: 5+2 pages, 4 figure

    The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy

    Full text link
    We present an all-loop dispersion integral, well-defined to arbitrary logarithmic accuracy, describing the multi-Regge limit of the 2->5 amplitude in planar N=4 super Yang-Mills theory. It follows from factorization, dual conformal symmetry and consistency with soft limits, and specifically holds in the region where the energies of all produced particles have been analytically continued. After promoting the known symbol of the 2-loop N-particle MHV amplitude in this region to a function, we specialize to N=7, and extract from it the next-to-leading order (NLO) correction to the BFKL central emission vertex, namely the building block of the dispersion integral that had not yet appeared in the well-studied six-gluon case. As an application of our results, we explicitly compute the seven-gluon amplitude at next-to-leading logarithmic accuracy through 5 loops for the MHV case, and through 3 and 4 loops for the two independent NMHV helicity configurations, respectively.Comment: 56 pages, 4 figures, 1 table; v2: minor corrections and clarifications, matches published versio

    Recent developments from Feynman integrals

    Full text link
    This talk reviews recent developments in the field of analytical Feynman integral calculations. The central theme is the geometry associated to a given Feynman integral. In the simplest case this is a complex curve of genus zero (aka the Riemann sphere). In this talk we discuss Feynman integrals related to more complicated geometries like curves of higher genus or manifolds of higher dimensions. In the latter case we encounter Calabi-Yau manifolds. We also discuss how to compute these Feynman integrals.Comment: 11 pages, talk given at the conference Matter to the Deepest 2023. arXiv admin note: substantial text overlap with arXiv:2309.0753

    Multi-Regge kinematics and the moduli space of Riemann spheres with marked points

    Get PDF
    We show that scattering amplitudes in planar N = 4 Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes' theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L + 4 external legs. We also investigate non-MHV amplitudes, and we show that they can be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. Finally, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.Comment: 104 pages, six awesome figures and ancillary files containing the results in Mathematica forma
    corecore