8 research outputs found

    Composition and thermal inertia of the Mawrth Vallis region of Mars from TES and THEMIS data

    No full text
    Clay mineral-bearing deposits previously discovered on Mars with near infrared (λ = 0.3 - 5 Όm) remote sensing data are of major significance for understanding the aqueous history, geological evolution, and past habitability of Mars. In this study, we analyzed the thermal infrared (λ = 6 - 35 Όm) surface properties of the most extensive phyllosilicate deposit on Mars: the Mawrth Vallis area. Clay mineral-bearing units, which in visible images appear to be relatively light-toned, layered bedrock, have thermal inertia values ranging from 150 to 460 J m-2 K-1 s-1/2. This suggests the deposits are composed of a mixture of rock with sand and dust at 100-meter scales. Dark-toned materials that mantle the clay-bearing surfaces have thermal inertia values ranging from 150 to 800, indicating variable degrees of rockiness or induration of this younger sedimentary or pyroclastic unit. Thermal Emission Spectrometer (TES) spectra of the light-toned rocks were analyzed with a number of techniques, but none of the results shows a large phyllosilicate component as has been detected in the same surfaces with near-infrared data. Instead, TES spectra of light-toned surfaces are best modeled by a combination of plagioclase feldspar, high-silica materials (similar to impure opaline silica or felsic glass), and zeolites. We propose three hypotheses for why the clay minerals are not apparent in thermal infrared data, including effects due to surface roughness, sub-pixel mixing of multiple surface temperatures, and low absolute mineral abundances combined with differences in spatial sampling between instruments. Zeolites modeled in TES spectra could be a previously unrecognized component of the alteration assemblage in the phyllosilicate-bearing rocks of the Mawrth Vallis area. TES spectral index mapping suggests that (Fe/Mg)-clays detected with near infrared data correspond to trioctahedral (Fe2+) clay minerals rather than nontronite-like clays. The average mineralogy and geologic context of these complex, interbedded deposits suggests they are either aqueous sedimentary rocks, altered pyroclastic deposits, or a combination of both. © 2008 Elsevier Inc.Link_to_subscribed_fulltex

    How Well Do We Know Europa’s Topography? An Evaluation of the Variability in Digital Terrain Models of Europa

    No full text
    Jupiter’s moon Europa harbors one of the most likely environments for extant extraterrestrial life. Determining whether Europa is truly habitable requires understanding the structure and thickness of its ice shell, including the existence of perched water or brines. Stereo-derived topography from images acquired by NASA Galileo’s Solid State Imager (SSI) of Europa are often used as a constraint on ice shell structure and heat flow, but the uncertainty in such topography has, to date, not been rigorously assessed. To evaluate the current uncertainty in Europa’s topography we generated and compared digital terrain models (DTMs) of Europa from SSI images using both the open-source Ames Stereo Pipeline (ASP) software and the commercial SOCET SET¼ software. After first describing the criteria for assessing stereo quality in detail, we qualitatively and quantitatively describe both the horizontal resolution and vertical precision of the DTMs. We find that the horizontal resolution of the SOCET SET¼ DTMs is typically 8–11× the root mean square (RMS) pixel scale of the images, whereas the resolution of the ASP DTMs is 9–13× the maximum pixel scale of the images. We calculate the RMS difference between the ASP and SOCET SET¼ DTMs as a proxy for the expected vertical precision (EP), which is a function of the matching accuracy and stereo geometry. We consistently find that the matching accuracy is ~0.5 pixels, which is larger than well-established “rules of thumb” that state that the matching accuracy is 0.2–0.3 pixels. The true EP is therefore ~1.7× larger than might otherwise be assumed. In most cases, DTM errors are approximately normally distributed, and errors that are several times the derived EP occur as expected. However, in two DTMs, larger errors (differences) occur and correlate with real topography. These differences primarily result from manual editing of the SOCET SET¼ DTMs. The product of the DTM error and the resolution is typically 4–8 pixel2 if calculated using the RMS image scale for SOCET SET¼ DTMs and the maximum images scale for the ASP DTMs, which is consistent with recent work using martian data sets and suggests that the relationship applies more broadly. We evaluate how ASP parameters affect DTM quality and find that using a smaller subpixel refinement kernel results in DTMs with smaller (better) resolution but, in some cases, larger gaps, which are sometimes reduced by increasing the size of the correlation kernel. We conclude that users of ASP should always systematically evaluate the choice of parameters for a given dataset

    Evaluating Stereo Digital Terrain Model Quality at Mars Rover Landing Sites with HRSC, CTX, and HiRISE Images

    No full text
    We have used high-resolution digital terrain models (DTMs) of two rover landing sites based on mosaicked images from the High-Resolution Imaging Science Experiment (HiRISE) camera as a reference to evaluate DTMs based on High-Resolution Stereo Camera (HRSC) and Context Camera (CTX) images. The Next-Generation Automatic Terrain Extraction (NGATE) matcher in the SOCET SET and GXPÂź commercial photogrammetric systems produces DTMs with good (small) horizontal resolution but large vertical error. Somewhat surprisingly, results for NGATE are terrain dependent, with poorer resolution and smaller errors on smoother surfaces. Multiple approaches to smoothing the NGATE DTMs give similar tradeoffs between resolution and error; a 5 × 5 lowpass filter is near optimal in terms of both combined resolution-error performance and local slope estimation. Smoothing with an area-based matcher, the standard processing for U.S. Geological Survey planetary DTMs, yields similar errors to the 5 × 5 filter at slightly worse resolution. DTMs from the HRSC team processing pipeline fall within this same trade space but are less sensitive to terrain roughness. DTMs produced with the Ames Stereo Pipeline also fall in this space at resolutions intermediate between NGATE and the team pipeline. Considered individually, resolution and error each varied by approximately a factor of 2. Matching errors were 0.2–0.5 pixels but most results fell in the 0.2–0.3 pixel range that has been stated as a rule of thumb in multiple prior studies. Horizontal resolutions of 10–20 image pixels were found, consistently greater than the 3–5 pixel spacing generally used for stereo DTM production. Resolution and precision were inversely correlated; their product varied by ≀20% (4–5 pixels squared). Refinement of the stereo DTM by photoclinometry can yield quantitative improvement in resolution (more than a factor of 2), provided that albedo variations over distances smaller than the stereo DTM resolution are not too severe. We offer specific guidance for both producers and users of planetary stereo DTMs, based on our results

    HiRISE views enigmatic deposits in the Sirenum Fossae region of Mars

    No full text
    HiRISE images together with other recent orbital data from Mars define new characteristics of enigmatic Hesperian-aged deposits in Sirenum Fossae that are mostly 100–200 m thick, drape kilometers of relief, and often display generally low relief surfaces. New characteristics of the deposits, previously mapped as the “Electris deposits,” include local detection of meter-scale beds that show truncating relationships, a generally light-toned nature, and a variably blocky, weakly indurated appearance. Boulders shed by erosion of the deposits are readily broken down and contribute little to talus. Thermal inertia values for the deposits are ~200 J m^(−2) K^(−1) s^(−1/2) and they may incorporate hydrated minerals derived from weathering of basalt. The deposits do not contain anomalous amounts of water or water ice. Deflation may dominate degradation of the deposits over time and points to an inventory of fine-grained sediment. Together with constraints imposed by the regional setting on formation processes, these newly resolved characteristics are most consistent with an eolian origin as a loess-like deposit comprised of redistributed and somewhat altered volcanic ash. Constituent sediments may be derived from airfall ash deposits in the Tharsis region. An origin directly related to airfall ash or similar volcanic materials is less probable and emplacement by alluvial/fluvial, impact, lacustrine, or relict polar processes is even less likely

    Assessment of environments for Mars Science Laboratory entry, descent, and surface operations

    Get PDF
    The Mars Science Laboratory mission aims to land a car-sized rover on Mars’surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and “fly out” deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft’s performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover’s thermal state that are used to plan surface operations
    corecore