67 research outputs found

    Hypertension and Cerebrovascular Dysfunction

    Get PDF
    Essential hypertension has devastating effects on the brain, being the major cause of stroke and a leading cause of dementia. Hypertension alters the structure of cerebral blood vessels and disrupts intricate vasoregulatory mechanisms that assure an adequate blood supply to the brain. These alterations threaten the cerebral blood supply and increase the susceptibility of the brain to ischemic injury as well as Alzheimer's disease. This review focuses on the mechanisms by which hypertension disrupts cerebral blood vessels, highlighting recent advances and outstanding issues

    IJPPP1112002

    Get PDF
    Abstract: The renin-angiotensin system (RAS) and its active peptide angiotensin II (AngII) have major involvements not only in hypertension but also in mood and anxiety disorders. Substantial evidence supports the notion that AngII acts as a neuromodulator in the brain. In this review, we provide an overview of the link between the RAS and anxiety or mood disorders, and focus on recent advances in the understanding of AngII-linked, NADPH oxidase-derived oxidative stress in the central nervous system, which may underlie pathogenesis of mood and anxiety disorders

    Disruption of the Sarcoglycan–Sarcospan Complex in Vascular Smooth Muscle A Novel Mechanism for Cardiomyopathy and Muscular Dystrophy

    Get PDF
    AbstractTo investigate mechanisms in the pathogenesis of cardiomyopathy associated with mutations of the dystrophin–glycoprotein complex, we analyzed genetically engineered mice deficient for either α-sarcoglycan (Sgca) or δ-sarcoglycan (Sgcd). We found that only Sgcd null mice developed cardiomyopathy with focal areas of necrosis as the histological hallmark in cardiac and skeletal muscle. Absence of the sarcoglycan–sarcospan (SG-SSPN) complex in skeletal and cardiac membranes was observed in both animal models. Loss of vascular smooth muscle SG-SSPN complex was only detected in Sgcd null mice and associated with irregularities of the coronary vasculature. Administration of a vascular smooth muscle relaxant prevented onset of myocardial necrosis. Our data indicate that disruption of the SG-SSPN complex in vascular smooth muscle perturbs vascular function, which initiates cardiomyopathy and exacerbates muscular dystrophy

    Physiological genomic analysis of the brain renin-angiotensin system

    No full text

    Emerging concepts in hypertension

    No full text
    Cellular redox balance is vital in health and disease. In this Forum, we highlight the importance of reactive oxygen species (ROS) in the regulation of redox balance in different organ systems of the body and ROS contribution to the development of hypertension. The Forum examines interactions between oxidative and nitrosative stress in the brain, vasculature, and kidney, and redox effect on end-organ damage and hypertension. Furthermore, the Forum examines the role of immune cells in the modulation of hypertension. We also introduce a new role for endoplasmic reticulum stress in the induction of ROS and its possible contribution to the development of hypertension. Finally, we explore the clinical relevance of increased ROS in the setting of human hypertension

    Emerging Concepts in Hypertension

    No full text
    Cellular redox balance is vital in health and disease. In this Forum, we highlight the importance of reactive oxygen species (ROS) in the regulation of redox balance in different organ systems of the body and ROS contribution to the development of hypertension. The Forum examines interactions between oxidative and nitrosative stress in the brain, vasculature, and kidney, and redox effect on end-organ damage and hypertension. Furthermore, the Forum examines the role of immune cells in the modulation of hypertension. We also introduce a new role for endoplasmic reticulum stress in the induction of ROS and its possible contribution to the development of hypertension. Finally, we explore the clinical relevance of increased ROS in the setting of human hypertension. Antioxid. Redox Signal. 20, 69–73

    Targeting Brain AT 1

    No full text
    • …
    corecore