1,292 research outputs found

    Circulating Total Bilirubin and Future Risk of Hypertension in the General Population: The Prevention of Renal and Vascular End-Stage Disease (PREVEND) Prospective Study and a Mendelian Randomization Approach

    Get PDF
    BACKGROUND: Circulating total bilirubin is known to be inversely and independently associated with future risk of cardiovascular disease. However, the relationship of circulating total bilirubin with incident hypertension is uncertain. We aimed to assess the association of total bilirubin with future hypertension risk and supplemented this with a Mendelian randomization approach to investigate any causal relevance to the association. METHODS AND RESULTS: Plasma total bilirubin levels were measured at baseline in the PREVEND (Prevention of Renal and Vascular End-Stage Disease) prospective study of 3989 men and women without hypertension. Hazard ratios (95% confidence intervals) of total bilirubin with incident hypertension were assessed. New-onset hypertension was recorded in 1206 participants during a median follow-up of 10.7 years. Baseline total bilirubin was approximately log-linearly associated with hypertension risk. Age- and sex-adjusted hazard ratio for hypertension per 1-SD increase in loge total bilirubin was 0.86 (0.81-0.92; P0.05 for all), arguing against a strong causal association of circulating bilirubin with blood pressure. CONCLUSIONS: The weak and inverse association of circulating total bilirubin with future hypertension risk may be driven by biases such as unmeasured confounding and/or reverse causation. Further evaluation is warranted.The Dutch Kidney Foundation supported the infrastructure of the PREVEND program from 1997 to 2003 (Grant E.033). The University Medical Center Groningen supported the infrastructure from 2003 to 2006. Dade Behring, Ausam, Roche, and Abbott financed laboratory equipment and reagents by which various laboratory determinations could be performed. The Dutch Heart Foundation supported studies on lipid metabolism (Grant 2001‐005). The funding sources had no role in study design; in data collection, analysis, or interpretation of the data; in writing of the report; or in the decision to submit for publication

    Water Challenges for Geologic Carbon Capture and Sequestration

    Get PDF
    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use

    The Transcriptional Network that Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1

    Get PDF
    The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1–2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data

    The Human Fungal Pathogen Cryptococcus neoformans Escapes Macrophages by a Phagosome Emptying Mechanism That Is Inhibited by Arp2/3 Complex-Mediated Actin Polymerisation

    Get PDF
    The lysis of infected cells by disease-causing microorganisms is an efficient but risky strategy for disseminated infection, as it exposes the pathogen to the full repertoire of the host's immune system. Cryptococcus neoformans is a widespread fungal pathogen that causes a fatal meningitis in HIV and other immunocompromised patients. Following intracellular growth, cryptococci are able to escape their host cells by a non-lytic expulsive mechanism that may contribute to the invasion of the central nervous system. Non-lytic escape is also exhibited by some bacterial pathogens and is likely to facilitate long-term avoidance of the host immune system during latency. Here we show that phagosomes containing intracellular cryptococci undergo repeated cycles of actin polymerisation. These actin ‘flashes’ occur in both murine and human macrophages and are dependent on classical WASP-Arp2/3 complex mediated actin filament nucleation. Three dimensional confocal imaging time lapse revealed that such flashes are highly dynamic actin cages that form around the phagosome. Using fluorescent dextran as a phagosome membrane integrity probe, we find that the non-lytic expulsion of Cryptococcus occurs through fusion of the phagosome and plasma membranes and that, prior to expulsion, 95% of phagosomes become permeabilised, an event that is immediately followed by an actin flash. By using pharmacological agents to modulate both actin dynamics and upstream signalling events, we show that flash occurrence is inversely related to cryptococcal expulsion, suggesting that flashes may act to temporarily inhibit expulsion from infected phagocytes. In conclusion, our data reveal the existence of a novel actin-dependent process on phagosomes containing cryptococci that acts as a potential block to expulsion of Cryptococcus and may have significant implications for the dissemination of, and CNS invasion by, this organism.\ud \u

    High Plasma Levels of Betaine, a Trimethylamine N-Oxide Related Metabolite, are Associated with Severity of Cirrhosis

    Get PDF
    Background and Aims: The gut microbiome-related metabolites betaine and trimethylamine N-oxide (TMAO) affect major health issues. In cirrhosis, betaine metabolism may be diminished because of impaired hepatic betaine homocysteine methyltransferase activity, whereas TMAO generation from trimethylamine may be altered because of impaired hepatic flavin monooxygenase expression. Here, we determined plasma betaine and TMAO levels in patients with end-stage liver disease and assessed their relationships with liver disease severity. Methods: Plasma betaine and TMAO concentrations were measured by nuclear magnetic resonance spectroscopy in 129 cirrhotic patients (TransplantLines cohort study; NCT03272841) and compared with levels from 4837 participants of the PREVEND cohort study. Disease severity was assessed by Child-Pugh-Turcotte (CPT) classification and Model for End-stage Liver Disease (MELD) score. Results: Plasma betaine was on average 60% higher (p < .001), whereas TMAO was not significantly lower in cirrhotic patients vs. PREVEND population (p = .44). After liver transplantation (n = 13), betaine decreased (p = .017; p = .36 vs. PREVEND population), whereas TMAO levels tended to increase (p = .085) to higher levels than in the PREVEND population (p = .003). Betaine levels were positively associated with the CPT stage and MELD score (both p < .001). The association with the MELD score remained in the fully adjusted analysis (p < .001). The association of TMAO with the MELD score did not reach significance (p = .11). Neither betaine nor TMAO levels were associated with mortality on the waiting list for liver transplantation (adjusted p = .78 and p = .44, respectively). Conclusion: Plasma betaine levels are elevated in cirrhotic patients in parallel with disease severity and decrease after liver transplantation

    Evolutionary Toxicology: Population-Level Effects of Chronic Contaminant Exposure on the Marsh Frogs (Rana ridibunda) of Azerbaijan

    Get PDF
    We used molecular methods and population genetic analyses to study the effects of chronic contaminant exposure in marsh frogs from Sumgayit, Azerbaijan. Marsh frogs inhabiting wetlands in Sumgayit are exposed to complex mixtures of chemical contaminants, including petroleum products, pesticides, heavy metals, and many other industrial chemicals. Previous results documented elevated estimates of genetic damage in marsh frogs from the two most heavily contaminated sites. Based on mitochondrial DNA (mtDNA) control region sequence data, the Sumgayit region has reduced levels of genetic diversity, likely due to environmental degradation. The Sumgayit region also acts as an ecological sink, with levels of gene flow into the region exceeding gene flow out of the region. Additionally, localized mtDNA heteroplasmy and diversity patterns suggest that one of the most severely contaminated sites in Sumgayit is acting as a source of new mutations resulting from an increased mutation rate. This study provides an integrated method for assessing the cumulative population impacts of chronic contaminant exposure by studying both population genetic and evolutionary effects
    corecore