28,884 research outputs found

    Applicability of 100kWe-class of space reactor power systems to NASA manned space station missions

    Get PDF
    An assessment is made of a manned space station operating with sufficiently high power demands to require a multihundred kilowatt range electrical power system. The nuclear reactor is a competitor for supplying this power level. Load levels were selected at 150kWe and 300kWe. Interactions among the reactor electrical power system, the manned space station, the space transportation system, and the mission were evaluated. The reactor shield and the conversion equipment were assumed to be in different positions with respect to the station; on board, tethered, and on a free flyer platform. Mission analyses showed that the free flyer concept resulted in unacceptable costs and technical problems. The tethered reactor providing power to an electrolyzer for regenerative fuel cells on the space station, results in a minimum weight shield and can be designed to release the reactor power section so that it moves to a high altitude orbit where the decay period is at least 300 years. Placing the reactor on the station, on a structural boom is an attractive design, but heavier than the long tethered reactor design because of the shield weight for manned activity near the reactor

    Research summary

    Get PDF
    The final report for progress during the period from 15 Nov. 1988 to 14 Nov. 1991 is presented. Research on methods for analysis of sound propagation through the atmosphere and on results obtained from application of our methods are summarized. Ten written documents of NASA research are listed, and these include publications, manuscripts accepted, submitted, or in preparation for publication, and reports. Twelve presentations of results, either at scientific conferences or at research or technical organizations, since the start of the grant period are indicated. Names of organizations to which software produced under the grant was distributed are provided, and the current arrangement whereby the software is being distributed to the scientific community is also described. Finally, the names of seven graduate students who worked on NASA research and received Rensselaer degrees during the grant period, along with their current employers are given

    Low-frequency sound propagation modeling over a locally-reacting boundary using the parabolic approximation

    Get PDF
    There is substantial interest in the analytical and numerical modeling of low-frequency, long-range atmospheric acoustic propagation. Ray-based models, because of frequency limitations, do not always give an adequate prediction of quantities such as sound pressure or intensity levels. However, the parabolic approximation method, widely used in ocean acoustics, and often more accurate than ray models for lower frequencies of interest, can be applied to acoustic propagation in the atmosphere. Modifications of an existing implicit finite-difference implementation for computing solutions to the parabolic approximation are discussed. A locally-reacting boundary is used together with a one-parameter impedance model. Intensity calculations are performed for a number of flow resistivity values in both quiescent and windy atmospheres. Variations in the value of this parameter are shown to have substantial effects on the spatial variation of the acoustic signal

    Probabilistic models of information retrieval based on measuring the divergence from randomness

    Get PDF
    We introduce and create a framework for deriving probabilistic models of Information Retrieval. The models are nonparametric models of IR obtained in the language model approach. We derive term-weighting models by measuring the divergence of the actual term distribution from that obtained under a random process. Among the random processes we study the binomial distribution and Bose--Einstein statistics. We define two types of term frequency normalization for tuning term weights in the document--query matching process. The first normalization assumes that documents have the same length and measures the information gain with the observed term once it has been accepted as a good descriptor of the observed document. The second normalization is related to the document length and to other statistics. These two normalization methods are applied to the basic models in succession to obtain weighting formulae. Results show that our framework produces different nonparametric models forming baseline alternatives to the standard tf-idf model

    Closed Trapped Surfaces in Cosmology

    Full text link
    The existence of closed trapped surfaces need not imply a cosmological singularity when the spatial hypersurfaces are compact. This is illustrated by a variety of examples, in particular de Sitter spacetime admits many closed trapped surfaces and obeys the null convergence condition but is non-singular in the k=+1 frame.Comment: 11 pages. To appear in GRG, Vol 35 (August issue

    Orbit-resolved photometry and echelle spectroscopy of the cataclysmic variable ST LMi during a 2007 high state

    Get PDF
    We present high-resolution echelle spectra and contemporaneous photometry of the polar ST LMi during a high state in 2007 March. Emission lines at Hα, He I λ5876, and He I λ7065 show similar line profiles over orbital phase and have narrow and broad components. These profile changes with phase are very similar to those reported in earlier high-state studies of ST LMi. The radial velocity curves from double Gaussian fits to the line profiles are interpreted as two crossing curves, neither of which is coincident with the orbital motion of the secondary star. We attribute one component to infall motions near the white dwarf and the other to a gas streaming along magnetic field lines connecting the two stars

    Modification of the simple mass balance equation for calculation of critical loads of acidity.

    Get PDF
    Over the last few years, the simple mass balance equation for the calculation of critical loads of acidity has been gradually modified as the underlying critical load concepts have developed and as problems with particular forms of the equation have been identified, through application in particular countries. The first major update of the equation took place following a workshop held in Vienna, Austria (Hojesky et al. 1993). The workshop was held to discuss problems which had been identified when the then current form of the equation was applied in countries with high rainfall. The problems had largely arisen because of simplifications and assumptions incorporated into the early formulation of the equation. The equation was reformulated to overcome the problems identified at the workshop. However, further problems were identified when the reformulated equation was applied in the UK in situations with a combination of high rainfall, large marine inputs and widespread occurrence of organic soils. A small workshop was, therefore held in Grange-over-Sands, UK in late 1993 to dicuss the problems and to further re-evaluate the equation. The problems had arisen in the UK because of simplifications and assumptions made in the formulation concerning, in particular, cation leaching and uptake. As a result, a more rigorous treatment of these variables was incorporated into the equation. The reformulation of the equation, as derived at the September 1993 workshop is described below

    Classical gravitational spin-spin interaction

    Get PDF
    I obtain an exact, axially symmetric, stationary solution of Einstein's equations for two massless spinning particles. The term representing the spin-spin interaction agrees with recently published approximate work. The spin-spin force appears to be proportional to the inverse fourth power of the coordinate distance between the particles.Comment: six pages, no figures, journal ref:accepted for Classical and Quantum Gravit

    Numerical analysis of flow non-uniformity in the hot gas manifold of the Space Shuttle main engine

    Get PDF
    Three-dimensional viscous flow in a conceptual hot gas manifold (HGM) for the Space Shuttle Main Engine High Pressure Fuel Turbopump (SSME HPFTP) was numerically analyzed. A finite difference scheme was used to solve the Navier-Stokes equations. The exact geometry of the SSME HGM was modeled using boundary fitted curvilinear coordinates and the General Interpolants Method (GIM) code. Slight compressibility of the subsonic flow was modeled using a linearized equation of state with artificial compressibility. A time relaxation method was used to obtain a steady state solution. The feasibility and potential usefulness of computational methods in assisting the design of SSME components which involves the flow of fluids within complex geometrical shapes is demonstrated
    corecore