5 research outputs found

    Radiotherapy exposure directly damages the uterus and causes pregnancy loss

    Get PDF
    Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma–/–) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.Meaghan J. Griffiths, Sarah A. Marshall, Fiona L. Cousins, Lauren R. Alesi, Jordan Higgins, Saranya Giridharan, Urooza C. Sarma, Ellen Menkhorst, Wei Zhou, Alison S. Care, Jacqueline F. Donoghue, Sarah J. Holdsworth-Carson, Peter A.W. Rogers, Evdokia Dimitriadis, Caroline E. Gargett, Sarah A. Robertson, Amy L. Winship, and Karla J. Hut

    Recovery of a new biogroup of Yersinia ruckeri from diseased rainbow trout (Oncorhynchus mykiss, Walbaum)

    No full text
    Cultures of a new biogroup of Yersinia ruckeri, the causal agent of enteric redmouth (ERM), were recovered in England from diseased rainbow trout (Oncorhynchus mykiss, Walbaum), which had been previously vaccinated with a commercial ERM vaccine. The bacterial isolates were confirmed as Y. ruckeri by the results of sequencing the 16S rRNA, but differed from the characteristics of the taxon by positivity for the Voges Proskauer reaction and a general lack of motility, and could not be equated with any of the existing serovars. Cultures were pathogenic in laboratory-based infectivity experiments with 100% mortalities occurring in juvenile rainbow trout (average weight = 10 g) within 4-days of intraperitoneal or intramuscular injection with 105 cells/fish. Protection against disease was achieved using a formalin-inactivated whole vaccine prepared against a representative isolate

    The ability of two different Vibrio spp. bacteriophages to infect Vibrio harveyi, Vibrio cholerae and Vibrio mimicus

    No full text
    Aims: To determine the host range of the Vibrio harveyi myovirus-like bacteriophage (VHML) and the cholera toxin conversion bacteriophage (CTX Φ) within a range of Vibrio cholerae and V. mimicus and V. harveyi, V. cholerae and V. mimicus isolates respectively.\ud \ud Methods and Results: Three V. harveyi, eight V. cholerae and five V. mimicus isolates were incubated with VHML and CTX Φ. Polymerase chain reaction (PCR) was used to determine the presence of VHML and CTX Φ in infected isolates. We demonstrated that it was possible to infect one isolate of V. cholerae (isolate ACM #2773/ATCC #14035) with VHML. This isolate successfully incorporated VHML into its genome as evident by positive PCR amplification of the sequence coding part of the tail sheath of VHML. Attempts to infect all other V. cholerae and V. mimicus isolates with VHML were unsuccessful. Attempts to infect V. cholerae non-01, V. harveyi andV. mimicus isolates with CTX Φ were unsuccessful.\ud \ud Conclusions: Bacteriophage infection is limited by bacteriophage-exclusion systems operating within bacterial strains and these systems appear to be highly selective. One system may allow the co-existence of one bacteriophage while excluding another. VHML appears to have a narrow host range which may be related to a common receptor protein in such strains. The lack of the vibrio pathogenicity island bacteriophage (VPI Φ) in the isolates used in this study may explain why infections with CTX Φ were unsuccessful.\ud \ud Significance and Impact of the Study: The current study has demonstrated that Vibrio spp. bacteriophages may infect other Vibrio spp.\u

    Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates

    No full text
    Vibrio harveyi, which now includes Vibrio carchariae as a junior synonym, is a serious pathogen of marine fish and invertebrates, particularly penaeid shrimp. In fish, the diseases include vasculitis, gastro-enteritis and eye lesions. With shrimp, the pathogen is associated with luminous vibriosis and Bolitas negricans. Yet, the pathogenicity mechanisms are imprecisely understood, with likely mechanisms involving the ability to attach and form biofilms, quorum sensing, various extracellular products including proteases and haemolysins, lipopolysaccharide, and interaction with bacteriophage and bacteriocin-like substances

    Phylum XIV. Bacteroidetes phyl. nov.

    No full text
    corecore