29,284 research outputs found

    Phonons in nanocrystalline Ni3Fe

    Get PDF
    Inelastic neutron-scattering spectra were measured to obtain the phonon density of states (DOS) of nanocrystalline fcc Ni3Fe. The materials were prepared by mechanical alloying, and were also subjected to heat treatments to alter their crystallite sizes and internal strains. In comparison to material with large crystallites, the nanocrystalline material shows two distinct differences in its phonon DOS. The nanocrystalline DOS was more than twice as large at energies below 15 meV. This increase was approximately proportional to the density of grain boundaries in the material. Second, features in the nanocrystalline DOS are broadened substantially. This broadening did not depend in a simple way on the crystallite size of the sample, suggesting that it has a different physical origin than the enhancement in phonon DOS at energies below 15 meV. A damped harmonic oscillator model for the phonons provides a quality factor Qu, as low as 7 for phonons in the nanocrystalline material. The difference in vibrational entropy of the bulk and nanocrystalline Ni3Fe was small, owing to competing changes in the nanocrystalline phonon DOS at low and high energies

    Temperature dependence of the phonon entropy of vanadium

    Get PDF
    The phonon density-of-states (DOS) of elemental vanadium was measured at elevated temperatures by inelastic neutron scattering. The phonon softening predicted by thermal expansion against the bulk modulus is much larger than the measured shifts in phonon energies. We conclude that the phonon anharmonicities associated with thermal expansion are largely canceled by effects from phonon-phonon scattering. Prior measurements of the heat capacity and calculations of the electronic entropy of vanadium are assessed, and consistency requires an explicit temperature dependence of the phonon DOS. Using data from the literature, similar results are found for chromium, niobium, titanium, and zirconium

    Pyroelectric detector arrays

    Get PDF
    A pyroelectric detector array and the method for using it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strips. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array

    Phonon contributions to the entropies of hP24 and fcc Co3V

    Get PDF
    Inelastic neutron-scattering spectra and neutron-diffraction patterns were measured on the alloy Co3V at temperatures from 1073-1513 K, where the hP24 (ordered hexagonal) and fee structures are the equilibrium states of the alloy. Phonon density of states (DOS) curves were calculated from the inelastic-scattering spectra, allowing estimates of the vibrational entropy in the harmonic and quasiharmonic approximations. The vibrational entropy of the hP24-fcc phase transition at 1323 K was found to be 0.07k(B)/atom. The anharmonic contributions to the entropy over a temperature range of 100 K were comparable to the vibrational entropy of this phase transition. The anharmonic softening of the phonon DOS was only slightly larger for the hP24 than the fee phase, however, so the anharmonic effects contribute only slightly to the difference in entropy of the two phases. The simple Gruneisen approximation was inadequate for predicting the thermal softening of the phonon DOS

    Vibrational entropy and microstructural effects on the thermodynamics of partially disordered and ordered Ni3V

    Get PDF
    Samples of Ni3V were prepared with two microstructures: (1) with equilibrium D022 order, and (2) with partial disorder (having a large D022 chemical order parameter, but without the tetragonality of the unit cell). For both materials, we measured the difference in their heat capacities from 60 to 325 K, inelastic neutron-scattering spectra at four values of Q at 11 and at 300 K, and Young's moduli and coefficients of thermal expansion. The difference in heat capacity at low temperatures was consistent with a harmonic model using the phonon density of states (DOS) curves determined from the inelastic neutron-scattering spectra. In contrast, at temperatures greater than 160 K the difference in heat capacity did not approach zero, as expected of harmonic behavior. The temperature dependence of the phonon DOS can be used to approximately account for the anharmonic contributions to the differential heat capacity. We also argue that some of the anharmonic behavior should originate with a microstructural contribution to the heat capacity involving anisotropic thermal contractions of the D022 structure. We estimate the difference in vibrational entropy between partially disordered and ordered Ni3V to be Spdis -Sord =(+0.038±0.015)kB /atom at 300 K

    A small angle neutron scattering and Mössbauer spectrometry study of magnetic structures in nanocrystalline Ni3Fe

    Get PDF
    Results are reported from small angle neutron scattering and Mössbauer spectrometry measurements on nanocrystalline Ni3Fe. The nanocrystalline materials were prepared by mechanical attrition and studied in the as-milled state, after annealing at 265 °C to relieve internal stress, and after annealing 600 °C to prepare a control sample comprising large crystals. The small angle neutron scattering (SANS) measurements were performed for a range of applied magnetic fields. Small differences were found in how the different samples reached magnetic saturation. From the SANS data obtained at magnetic saturation, we found little difference in the nuclear scattering of the as-milled material and the material annealed at 265 °C. Reductions in nuclear scattering and magnetic scattering were observed for the control sample, and this was interpreted as grain growth. The material annealed at 265 °C also showed a reduction in magnetic SANS compared to the as-milled material. This was interpreted as an increase in magnetic moments of atoms at the grain boundaries after a low temperature annealing. Both Mössbauer spectroscopy and small angle neutron scattering showed an increase in the grain boundary magnetic moments after the 265 °C annealing (0.2 and 0.4µB/atom, respectively), even though there was little change in the grain boundary atomic density

    High-Redshift Superclustering of QSO Absorption Line Systems on 100 Mpc Scales

    Full text link
    We have analyzed the clustering of C IV absorption line systems in an extensive new catalog of heavy element QSO absorbers. The catalog permits exploration of clustering over a large range in both scale (from about 1 to over 300 Mpc) and redshift (z from 1.2 to 4.5). We find significant evidence (5.0 sigma) that C IV absorbers are clustered on comoving scales of 100 Mpc and less --- similar to the size of voids and walls found in galaxy redshift surveys of the local universe --- with a mean correlation function ξ=0.42±0.10\xi = 0.42 \pm 0.10 over these scales. We find, on these scales, that the mean correlation function at low (z=1.7), medium (z=2.4), and high redshift (z=3.0) is ξ=0.40±0.17\xi=0.40 \pm 0.17, 0.32±0.140.32 \pm 0.14, and 0.72±0.250.72 \pm 0.25, respectively. Thus, the superclustering is present even at high redshift; furthermore, it does not appear that the superclustering scale, in comoving coordinates, has changed significantly since then. We find 7 QSOs with rich groups of absorbers (potential superclusters) that account for a significant portion of the clustering signal, with 2 at redshift z∼2.8z\sim 2.8. We find that the superclustering is just as evident if we take q0=0.1q_0=0.1 instead of 0.5; however, the inferred scale of clustering is then 240 Mpc , which is larger than the largest scales of clustering known at present. This discrepancy may be indicative of a larger value of q0q_0, and hence Ω0\Omega_0. The evolution of the correlation function on 50 Mpc scales is consistent with that expected in cosmologies with density parameter ranging from Ω0=\Omega_0 = 0.1 to 1. Finally, we find no evidence for clustering on scales greater than 100 Mpc (q0=0.5q_0=0.5) or 240 Mpc (q0=0.1q_0=0.1).Comment: 16 LaTeX pages with 3 encapsulated Postscript figures included, uses AASTeX (v. 4.0) available at ftp://ftp.aas.org/pubs/ , to appear in The Astrophysical Journal Letter

    Arkansas Cotton Variety Test 2016

    Get PDF
    The primary goal of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas

    Arkansas Cotton Variety Test 2015

    Get PDF
    The primary goal of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed companies establish marketing strategies and assists producers in choosing varieties to plant. These annual evaluations will then facilitate the inclusion of new, improved genetic material in Arkansas cotton production
    • …
    corecore