1,639 research outputs found

    Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications,

    Get PDF
    The extent to which collagen alignment occurs during dermal wound healing determines the severity of scar tissue formation. We have modelled this using a multiscale approach, in which extracellular materials, for example collagen and fibrin, are modelled as continua, while fibroblasts are considered as discrete units. Within this model framework, we have explored the effects that different parameters have on the alignment process, and we have used the model to investigate how manipulation of transforming growth factor-β levels can reduce scar tissue formation. We briefly review this body of work, then extend the modelling framework to investigate the role played by leucocyte signalling in wound repair. To this end, fibroblast migration and collagen deposition within both the wound region and healthy peripheral tissue are considered. Trajectories of individual fibroblasts are determined as they migrate towards the wound region under the combined influence of collagen/fibrin alignment and gradients in a paracrine chemoattractant produced by leucocytes. The effects of a number of different physiological and cellular parameters upon the collagen alignment and repair integrity are assessed. These parameters include fibroblast concentration, cellular speed, fibroblast sensitivity to chemoattractant concentration and chemoattractant diffusion coefficient. Our results show that chemoattractant gradients lead to increased collagen alignment at the interface between the wound and the healthy tissue. Results show that there is a trade-off between wound integrity and the degree of scarring. The former is found to be optimized under conditions of a large chemoattractant diffusion coefficient, while the latter can be minimized when repair takes place in the presence of a competitive inhibitor to chemoattractants

    The sigma term and the quark number operator in QCD

    Full text link
    We discuss the relationship of the forward matrix element of the operator ψˉψ\bar\psi\psi, related to the so-called sigma term, to the quark number. We show that in the naive quark model in the canonical formalism these quantities coincide in the limit of small average quark momenta. In the QCD parton model defined through light-front quantization this result is preserved at leading perturbative order but it receives radiative corrections. We analyze the theoretical and phenomenological consequences of this result, which provides a bridge between a current algebra quantity, the sigma term, and a deep-inelastic quantity, the parton number.Comment: 30 pages, 1 figure, DFTT-92-6 (April 1993

    Association between non-medical cannabis legalization and emergency department visits for cannabis-induced psychosis

    Get PDF
    A major public health concern of cannabis legalization is that it may result in an increase in psychotic disorders. We examined changes in emergency department (ED) visits for cannabis-induced psychosis following the legalization and subsequent commercialization (removal of restrictions on retail stores and product types) of non-medical cannabis in Ontario, Canada (population of 14.3 million). We used health administrative data containing the cause of all ED visits to examine changes over three periods; 1) pre-legalization (January 2014–September 2018); 2) legalization with restrictions (October 2018 – February 2020); and 3) commercialization (March 2020 – September 2021). We considered subgroups stratified by age and sex and examined cocaine- and methamphetamine-induced psychosis ED visits as controls. During our study, there were 6300 ED visits for cannabis-induced psychosis. The restricted legalization period was not associated with changes in rates of ED visits for cannabis-induced psychosis relative to pre-legalization. The commercialization period was associated with an immediate increase in rates of ED visits for cannabis-induced psychosis (IRR 1.30, 95% CI 1.02–1.66) and no gradual monthly change; immediate increases were seen only for youth above (IRR 1.63, 1.27–2.08, ages 19–24) but not below (IRR 0.73 95%CI 0.42–1.28 ages, 15–18) the legal age of purchase, and similar for men and women. Commercialization was not associated with changes in rates of ED visits for cocaine- or methamphetamine-induced psychosis. This suggests that legalization with store and product restrictions does not increase ED visits for cannabis-induced psychosis. In contrast, cannabis commercialization may increase cannabis-induced psychosis presentations highlighting the importance of preventive measures in regions considering legalization

    Low-energy QCD: Chiral coefficients and the quark-quark interaction

    Full text link
    A detailed investigation of the low-energy chiral expansion is presented within a model truncation of QCD. The truncation allows for a phenomenological description of the quark-quark interaction in a framework which maintains the global symmetries of QCD and permits a 1/Nc1/N_c expansion. The model dependence of the chiral coefficients is tested for several forms of the quark-quark interaction by varying the form of the running coupling, α(q2)\alpha (q^2), in the infrared region. The pattern in the coefficients that arises at tree level is consistent with large NcN_c QCD, and is related to the model truncation.Comment: 28 pages, Latex, 6 postscript figures available on request to [email protected]

    Nonperturbative aspects of the quark-photon vertex

    Get PDF
    The electromagnetic interaction with quarks is investigated through a relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the quark-photon vertex and the quark self-energy functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger-Dyson equation in the rainbow approximation respectively. Results for the calculation of the quark-photon vertex are presented in both the time-like and space-like regions of photon momentum squared, however emphasis is placed on the space-like region relevant to electron scattering. The treatment presented here simultaneously addresses the role of dynamically generated qqˉq\bar{q} vector bound states and the approach to asymptotic behavior. The resulting description is therefore applicable over the entire range of momentum transfers available in electron scattering experiments. Input parameters are limited to the model gluon two-point function, which is chosen to reflect confinement and asymptotic freedom, and are largely constrained by the obtained bound-state spectrum.Comment: 8 figures available on request by email, 25 pages, Revtex, DOE/ER/40561-131-INT94-00-5

    Guiding the Way to Gamma-Ray Sources: X-ray Studies of Supernova Remnants

    Full text link
    Supernova remnants have long been suggested as a class of potential counterparts to unidentified gamma-ray sources. The mechanisms by which such gamma-rays can arise may include emission from a pulsar associated with a remnant, or a variety of processes associated with energetic particles accelerated by the SNR shock. Imaging and spectral observations in the X-ray band can be used to identify properties of the remnants that lead to gamma-ray emission, including the presence of pulsar-driven nebulae, nonthermal X-ray emission from the SNR shells, and the interaction of SNRs with dense surrounding material.Comment: 16 pages, 11 figures, To appear in the proceedings of the workshop: "The Nature of the Unidentified Galactic Gamma-Ray Sources" held at INAOE, Mexico, October 2000, (A.Carraminana, O. Reiner and D. Thompson, eds.

    Confinement and scaling in deep inelastic scattering

    Full text link
    We show that parton confinement in the final state generates large 1/Q21/Q^2 corrections to Bjorken scaling, thus leaving less room for the logarithmic corrections. In particular, the xx-scaling violations at large xx are entirely described in terms of power corrections. For treatment of these non-perturbative effects, we derive a new expansion in powers of 1/Q21/Q^2 for the structure function that is free of infra-red singularities and which reduces corrections to the leading term. The leading term represents scattering from an off-mass-shell parton, which keeps the same virtual mass in the final state. It is found that this quasi-free term is a function of a new variable xˉ\bar x, which coincides with the Bjorken variable xx for Q2→∞Q^2\to\infty. The two variables are very different, however, at finite Q2Q^2. In particular, the variable xˉ\bar x depends on the invariant mass of the spectator particles. Analysis of the data at large xx shows excellent scaling in the variable xˉ\bar x, and determines the value of the diquark mass to be close to zero. xˉ\bar x-scaling allows us to extract the structure function near the elastic threshold. It is found to behave as F2∼(1−x)3.7F_2\sim (1-x)^{3.7}. Predictions for the structure functions based on xˉ\bar x-scaling are made.Comment: Discussion of target mass corrections is added. Accepted for publication in Phys. Rev.

    Nano-Immunodetection and Quantification of Mycobacteria in Metalworking Fluids

    Full text link
    The accurate detection and enumeration of mycobacteria in metalworking fluids (MWFs) is imperative from an environmental protection and occupational health perspective. We report here on a comparison of the labeling efficiency of nano-immunomagnetic particles (NIMP) and free antibody (FAb) to detect mycobacteria in semisynthetic MWF by using both traditional visualization analysis and cluster analysis aided visualization analysis (CAAVA). The NIMP labeling method involved coating nanometer-scale magnetic particles with Protein A, and oriented conjugation of polyclonal antibodies specific to Mycobacterium spp. The FAb labeling method is modified from the traditional immunofluorescence (IF) method for more efficient detection of mycobacteria in a model MWF. The labeling efficiency of NIMP and FAb were 7.2 ± 4.6 and 16.3 ± 5.5%, and the specificity 85.0 ± 6.1 and 88.1 ± 10.5%, respectively, based on traditional visualization analysis. Based on CAAVA analysis, the labeling efficiency of NIMP and FAb increased to 12.4 ± 1.6 and 20.5 ± 3.9%, and the specificity to 97.8 ± 3.2 and 98.5 ± 2.5%, respectively. A linear relationship of FCM counts and seeded concentrations was observed over four orders of magnitude (R 2 ≤ 0.99) in pure and ternary cultures. The results strongly support the applicability of either FAb or NIMP coupled with CAAVA and flow cytometry for rapid detection and enumeration of mycobacteria in complex matrices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63114/1/ees.2007.24.58.pd
    • …
    corecore