41,449 research outputs found
MEXIT: Maximal un-coupling times for stochastic processes
Classical coupling constructions arrange for copies of the \emph{same} Markov
process started at two \emph{different} initial states to become equal as soon
as possible. In this paper, we consider an alternative coupling framework in
which one seeks to arrange for two \emph{different} Markov (or other
stochastic) processes to remain equal for as long as possible, when started in
the \emph{same} state. We refer to this "un-coupling" or "maximal agreement"
construction as \emph{MEXIT}, standing for "maximal exit". After highlighting
the importance of un-coupling arguments in a few key statistical and
probabilistic settings, we develop an explicit \MEXIT construction for
stochastic processes in discrete time with countable state-space. This
construction is generalized to random processes on general state-space running
in continuous time, and then exemplified by discussion of \MEXIT for Brownian
motions with two different constant drifts.Comment: 28 page
Kinematic dynamo action in a sphere. I. Effects of differential rotation and meridional circulation on solutions with axial dipole symmetry
A sphere containing electrically conducting fluid can generate a magnetic field by dynamo action, provided the flow is sufficiently complicated and vigorous. The dynamo mechanism is thought to sustain magnetic fields in planets and stars. The kinematic dynamo problem tests steady flows for magnetic instability, but rather few dynamos have been found so far because of severe numerical difficulties. Dynamo action might, therefore, be quite unusual, at least for large-scale steady flows. We address this question by testing a two-parameter class of flows for dynamo generation of magnetic fields containing an axial dipole. The class of flows includes two completely different types of known dynamos, one dominated by differential rotation (D) and one with none. We find that 36% of the flows in seven distinct zones in parameter space act as dynamos, while the remaining 64% either fail to generate this type of magnetic field or generate fields that are too small in scale to be resolved by our numerical method. The two previously known dynamo types lie in the same zone, and it is therefore possible to change the flow continuously from one to the other without losing dynamo action. Differential rotation is found to promote large-scale axisymmetric toroidal magnetic fields, while meridional circulation (M) promotes large-scale axisymmetric poloidal fields concentrated at high latitudes near the axis. Magnetic fields resembling that of the Earth are generated by D > 0, corresponding to westward flow at the surface, and M of either sign but not zero. Very few oscillatory solutions are found
Induced encystment improves resistance to preservation and storage of Acanthamoeba castellanii
Several conditions that allow the preservation, storage and rapid, efficient recovery of viable Acanthamoeba castellanii organisms were investigated. The viability of trophozoites (as determined by time to confluence) significantly declined over a period of 12 months when stored at â70°C using dimethyl sulfoxide (DMSO; 5 or 10%) as cryopreservant. As A. castellanii are naturally capable of encystment, studies were undertaken to determine whether induced encystment might improve the viability of organisms under a number of storage conditions. A. castellanii cysts stored in the presence of Mg2+ at 4°C remained viable over the study period, although time to confluence was increased from approximately 8 days to approximately 24 days over the 12-month period. Storage of cysts at â70°C with DMSO (5 or 10%) or 40% glycerol, but not 80% glycerol as cryopreservants increased their viability over the 12-month study period compared with those stored at room temperature. Continued presence of Mg2+ in medium during storage had no adverse effects and generally improved recovery of viable organisms. The present study demonstrates that A. castellanii can be stored as a non-multiplicative form inexpensively, without a need for cryopreservation, for at least 12 months, but viability is increased by storage at â70°C
Radio Astronomical Polarimetry and Point-Source Calibration
A mathematical framework is presented for use in the experimental
determination of the polarimetric response of observatory instrumentation.
Elementary principles of linear algebra are applied to model the full matrix
description of the polarization measurement equation by least-squares
estimation of non-linear, scalar parameters. The formalism is applied to
calibrate the center element of the Parkes Multibeam receiver using
observations of the millisecond pulsar, PSR J0437-4715, and the radio galaxy,
3C 218 (Hydra A).Comment: 8 pages, 4 figures, to be published in ApJ
Asymptotics of 10j symbols
The Riemannian 10j symbols are spin networks that assign an amplitude to each
4-simplex in the Barrett-Crane model of Riemannian quantum gravity. This
amplitude is a function of the areas of the 10 faces of the 4-simplex, and
Barrett and Williams have shown that one contribution to its asymptotics comes
from the Regge action for all non-degenerate 4-simplices with the specified
face areas. However, we show numerically that the dominant contribution comes
from degenerate 4-simplices. As a consequence, one can compute the asymptotics
of the Riemannian 10j symbols by evaluating a `degenerate spin network', where
the rotation group SO(4) is replaced by the Euclidean group of isometries of
R^3. We conjecture formulas for the asymptotics of a large class of Riemannian
and Lorentzian spin networks in terms of these degenerate spin networks, and
check these formulas in some special cases. Among other things, this conjecture
implies that the Lorentzian 10j symbols are asymptotic to 1/16 times the
Riemannian ones.Comment: 25 pages LaTeX with 8 encapsulated Postscript figures. v2 has various
clarifications and better page breaks. v3 is the final version, to appear in
Classical and Quantum Gravity, and has a few minor corrections and additional
reference
Testing the assumptions of linear prediction analysis in normal vowels
This paper develops an improved surrogate data test to show experimental evidence, for all the simple vowels of US English, for both male and female speakers, that Gaussian linear prediction analysis, a ubiquitous technique in current speech technologies, cannot be used to extract all the dynamical structure of real speech time series. The test provides robust evidence undermining the validity of these linear techniques, supporting the assumptions of either dynamical nonlinearity and/or non-Gaussianity common to more recent, complex, efforts at dynamical modelling speech time series. However, an additional finding is that the classical assumptions cannot be ruled out entirely, and plausible evidence is given to explain the success of the linear Gaussian theory as a weak approximation to the true, nonlinear/non-Gaussian dynamics. This supports the use of appropriate hybrid linear/nonlinear/non-Gaussian modelling. With a calibrated calculation of statistic and particular choice of experimental protocol, some of the known systematic problems of the method of surrogate data testing are circumvented to obtain results to support the conclusions to a high level of significance
- âŠ