2,068 research outputs found
Economic evaluation of the routine use of echocardiography versus natriuretic peptide and ECG-targeted echocardiography in the diagnosis of heart failure
Objectives: To investigate the most efficient use of echocardiography and natriuretic peptide testing in the diagnosis of heart failure.
Design: An economic model comparing two strategies: (A) provide echocardiography and electrocardiogram (ECG) for all individuals who present to a GP with symptoms that may be due to heart failure; (B) carry out B-type natriuretic peptide (BNP) blood test and ECG on all such individuals and provide echocardiography only where an abnormality is detected in one of more of these tests.
Setting: Primary care in the UK NHS.
Subjects: Individuals who present to a GP with new symptoms of heart failure.
Main outcome measures: Cost per life year gained.
Results: Baseline cost per life year gained by strategy A compared with strategy B is £3,987.
Conclusions: Immediate echocardiography is the most cost-effective option. Where echocardiography is a scarce resource, efficient use can be obtained by using BNP and ECG tests to identify patients most likely to have heart failure
Marine environmental monitoring programmes in South Africa: a review
South Africa uniquely lies at the junction of two major currents, the Agulhas and the Benguela. The waters overlying the continental shelf exhibit exceptionally high short-, medium- and long-term (days to inter-decadal) variability compared with most other shelf areas, and strongly contrasting oceanographic conditions are observed on the east and west coasts. South Africa is rich in fisheries resources and associated environmental data collected over more than a century. The South African marine scientific community has a history of multidisciplinary studies of marine foodwebs, from the driving forces such as wind, currents and solar heating, to the top predators, with the development of kelp bed, sub-tidal reefs and estuarine ecosystem studies in the 1970s; the Benguela Ecology Programme, which ran through four successive five-year stages, focused on the pelagic marine resources. Various approaches have been used to observe the continental shelf at different time and space scales, including: macroscale but frequent satellite imagery, mesoscale environmental and fishery surveys, dedicated crossshelf transects in key areas, measurements of dynamic processes, use of moored buoys and coastal weather stations, and integrated monitoring approaches, including modelling and simulation studies. Between 30 and 50 years of comprehensive marine data now exist, which are proving useful in the application of an ecosystem approach to fisheries monitoring and management, as decadal changes become discernible. These observations need to continue; even though the single-species stock assessment and operational management procedures have not yet formally used environmental factors for fisheries management advice, they help us to understand the factors affecting fish population fluctuations and early life histories and to identify large-scale regime shifts where marine trophic structure and functioning alter to a new state
Nonperturbative Aspect of Axial Vector Vertex in the Global Color Symmetry Model
It is shown how the axial vector current of current quarks is related to that
of constituent quarks within the framework of the global color symmetry model.
Gluon dressing of the axial vector vertex and the quark self-energy functions
is described by the inhomogeneous Bethe-Salpeter equation in the ladder
approximation and the Schwinger-Dyson equation in the rainbow approximation,
respectively.Comment: 10 page
Low-energy QCD: Chiral coefficients and the quark-quark interaction
A detailed investigation of the low-energy chiral expansion is presented
within a model truncation of QCD. The truncation allows for a phenomenological
description of the quark-quark interaction in a framework which maintains the
global symmetries of QCD and permits a expansion. The model dependence
of the chiral coefficients is tested for several forms of the quark-quark
interaction by varying the form of the running coupling, , in the
infrared region. The pattern in the coefficients that arises at tree level is
consistent with large QCD, and is related to the model truncation.Comment: 28 pages, Latex, 6 postscript figures available on request to
[email protected]
Mesons as qbar-q Bound States from Euclidean 2-Point Correlators in the Bethe-Salpeter Approach
We investigate the 2-point correlation function for the vector current. The
gluons provide dressings for both the quark self energy as well as the vector
vertex function, which are described consistently by the rainbow
Dyson-Schwinger equation and the inhomogeneous ladder Bethe-Salpeter equation.
The form of the gluon propagator at low momenta is modeled by a 2-parameter
ansatz fitting the weak pion decay constant. The quarks are confined in the
sense that the quark propagator does not have a pole at timelike momenta. We
determine the ground state mass in the vector channel from the Euclidean time
Fourier transform of the correlator, which has an exponential falloff at large
times. The ground state mass lies around 590 MeV and is almost independent of
the model form for the gluon propagator. This method allows us to stay in
Euclidean space and to avoid analytic continuation of the quark or gluon
propagators into the timelike region.Comment: 21 pages (REVTEX), 8 Postscript figure
Should the Pomeron and imaginary parts be modelled by two gluons and real quarks?
We illustrate that solution of the Schwinger-Dyson equation for the gluon
propagator in QCD does not support an infrared softened behaviour, but only an
infrared enhancement. This has consequences for the modelling of the Pomeron in
terms of dressed gluon exchange. It highlights that an understanding of the
Pomeron within QCD must take account of the bound state nature of hadrons.Comment: 7 pages, latex, 2 figures, replaced ~\epsfig... by \mbox{\epsfig...
Nonperturbative aspects of the quark-photon vertex
The electromagnetic interaction with quarks is investigated through a
relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the
quark-photon vertex and the quark self-energy functions is described by the
inhomogeneous Bethe-Salpeter equation in the ladder approximation and the
Schwinger-Dyson equation in the rainbow approximation respectively. Results for
the calculation of the quark-photon vertex are presented in both the time-like
and space-like regions of photon momentum squared, however emphasis is placed
on the space-like region relevant to electron scattering. The treatment
presented here simultaneously addresses the role of dynamically generated
vector bound states and the approach to asymptotic behavior. The
resulting description is therefore applicable over the entire range of momentum
transfers available in electron scattering experiments. Input parameters are
limited to the model gluon two-point function, which is chosen to reflect
confinement and asymptotic freedom, and are largely constrained by the obtained
bound-state spectrum.Comment: 8 figures available on request by email, 25 pages, Revtex,
DOE/ER/40561-131-INT94-00-5
Electromagnetic form factors of light vector mesons
The electromagnetic form factors G_E(q^2), G_M(q^2), and G_Q(q^2), charge
radii, magnetic and quadrupole moments, and decay widths of the light vector
mesons rho^+, K^{*+} and K^{*0} are calculated in a Lorentz-covariant,
Dyson-Schwinger equation based model using algebraic quark propagators that
incorporate confinement, asymptotic freedom, and dynamical chiral symmetry
breaking, and vector meson Bethe-Salpeter amplitudes closely related to the
pseudoscalar amplitudes obtained from phenomenological studies of pi and K
mesons. Calculated static properties of vector mesons include the charge radii
and magnetic moments: r_{rho+} = 0.61 fm, r_{K*+} = 0.54 fm, and r^2_{K*0} =
-0.048 fm^2; mu_{rho+} = 2.69, mu_{K*+} = 2.37, and mu_{K*0} = -0.40. The
calculated static limits of the rho-meson form factors are similar to those
obtained from light-front quantum mechanical calculations, but begin to differ
above q^2 = 1 GeV^2 due to the dynamical evolution of the quark propagators in
our approach.Comment: 8 pages of RevTeX, 5 eps figure
Multiplicative renormalizability and quark propagator
The renormalized Dyson-Schwinger equation for the quark propagator is
studied, in Landau gauge, in a novel truncation which preserves multiplicative
renormalizability. The renormalization constants are formally eliminated from
the integral equations, and the running coupling explicitly enters the kernels
of the new equations. To construct a truncation which preserves multiplicative
renormalizability, and reproduces the correct leading order perturbative
behavior, non-trivial cancellations involving the full quark-gluon vertex are
assumed in the quark self-energy loop. A model for the running coupling is
introduced, with infrared fixed point in agreement with previous
Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail.
Dynamical chiral symmetry breaking is investigated, and the generated quark
mass is of the order of the extension of the infrared plateau of the coupling,
and about three times larger than in the Abelian approximation, which violates
multiplicative renormalizability. The generated scale is of the right size for
hadronic phenomenology, without requiring an infrared enhancement of the
running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added;
accepted for publication in Phys. Rev.
K -> pi pi and a light scalar meson
We explore the Delta-I= 1/2 rule and epsilon'/epsilon in K -> pi pi
transitions using a Dyson-Schwinger equation model. Exploiting the feature that
QCD penguin operators direct K^0_S transitions through 0^{++} intermediate
states, we find an explanation of the enhancement of I=0 K -> pi pi transitions
in the contribution of a light sigma-meson. This mechanism also affects
epsilon'/epsilon.Comment: 7 pages, REVTE
- …
