1,235 research outputs found

    Sickle cell disease in Sierra Leone: a neglected problem

    Get PDF
    Background: Sickle cell disease (SCD) is common in Sierra Leone although its exact prevalence, incidence and clinical spectrum are unknown.Methods: Using a statistical package, StatsDirect (Altrincham, United Kingdom) we analyzed the demographic characteristics, presentations, acute events, treatments and clinical outcomes in a cohort of SCD patients attending sickle cell clinics in Freetown, Sierra Leone between February 2007 and August 2010.Results: There were 446 patients, median age of 13 years. Of these, 435 were homozygotes (HbSS), median age 13 years also. There were 248 females, median age 12.5 and 198 males, median age 14, resulting in a male:female ratio of 0.79. Eleven (2.4%) were Sickle Cell-HbC disease, median age 14 years. Patients demonstrated many of the typical features of SCD. The most common reason for hospital admission was bone pain crisis associated with an infection, followed by severe anemia. Aseptic necrosis of the femoral head, leg ulcers, septic osteomyelitis and gallstones were seen in 0.22% of patients, but strokes and acute chest syndrome were not observed. The death rate was 2.51/100 patient years observation with an estimated mean survival of 3.6 years (CI 3.2-3.7). Severe anemia was implicated in the death of 8 patients (50%), whereas only 2 deaths (12.5%) were attributable to bone pain crisis. One death (6.25%) was associated with pregnancy complicated by severe anemia and another with an adverse blood transfusion event.Conclusion: The clinical outcomes in this series highlight the need for a more comprehensive provision of care for SCD patients in Sierra Leone.Keywords: Sickle cell disease, Sierra Leone, survival, anaemia, haemoglobinopath

    Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity

    Full text link
    We construct holographic superconductors from Einstein-Maxwell-dilaton gravity in 3+1 dimensions with two adjustable couplings α\alpha and the charge qq carried by the scalar field. For the values of α\alpha and qq we consider, there is always a critical temperature at which a second order phase transition occurs between a hairy black hole and the AdS RN black hole in the canonical ensemble, which can be identified with the superconducting phase transition of the dual field theory. We calculate the electric conductivity of the dual superconductor and find that for the values of α\alpha and qq where α/q\alpha/q is small the dual superconductor has similar properties to the minimal model, while for the values of α\alpha and qq where α/q\alpha/q is large enough, the electric conductivity of the dual superconductor exhibits novel properties at low frequencies where it shows a "Drude Peak" in the real part of the conductivity.Comment: 25 pages, 13 figures; v2, typos corrected; v3, refs added, to appear in JHE

    Analytic study of properties of holographic p-wave superconductors

    Full text link
    In this paper, we analytically investigate the properties of p-wave holographic superconductors in AdS4AdS_{4}-Schwarzschild background by two approaches, one based on the Sturm-Liouville eigenvalue problem and the other based on the matching of the solutions to the field equations near the horizon and near the asymptotic AdSAdS region. The relation between the critical temperature and the charge density has been obtained and the dependence of the expectation value of the condensation operator on the temperature has been found. Our results are in very good agreement with the existing numerical results. The critical exponent of the condensation also comes out to be 1/2 which is the universal value in the mean field theory.Comment: Latex, To appear in JHE

    Axion monodromy in a model of holographic gluodynamics

    Full text link
    The low energy field theory for N type IIA D4-branes at strong 't Hooft coupling, wrapped on a circle with antiperiodic boundary conditions for fermions, is known to have a vacuum energy which depends on the θ\theta angle for the gauge fields, and which is a multivalued function of this angle. This gives a field-theoretic realization of "axion monodromy" for a nondynamical axion. We construct the supergravity solution dual to the field theory in the metastable state which is the adiabatic continuation of the vacuum to large values of θ\theta. We compute the energy of this state and show that it initially rises quadratically and then flattens out. We show that the glueball mass decreases with θ\theta, becoming much lower than the 5d KK scale governing the UV completion of this model. We construct two different classes of domain walls interpolating between adjacent vacua. We identify a number of instability modes -- nucleation of domain walls, bulk Casimir forces, and condensation of tachyonic winding modes in the bulk -- which indicate that the metastable branch eventually becomes unstable. Finally, we discuss two phenomena which can arise when the axion is dynamical; axion-driven inflation, and axion strings.Comment: 43 pages, 10 figures. v2: references update

    Low temperature properties of holographic condensates

    Full text link
    In the current work we study various models of holographic superconductors at low temperature. Generically the zero temperature limit of those models are solitonic solution with a zero sized horizon. Here we generalized simple version of those zero temperature solutions to small but non-zero temperature T. We confine ourselves to cases where near horizon geometry is AdS^4. At a non-zero temperature a small horizon would form deep inside this AdS^4 which does not disturb the UV physics. The resulting geometry may be matched with the zero temperature solution at an intermediate length scale. We understand this matching from separation of scales by setting up a perturbative expansion in gauge potential. We have a better analytic control in abelian case and quantities may be expressed in terms of hypergeometric function. From this we calculate low temperature behavior of various quatities like entropy, charge density and specific heat etc. We also calculate various energy gaps associated with p-wave holographic superconductor to understand the underlying pairing mechanism. The result deviates significantly from the corresponding weak coupling BCS counterpart.Comment: 17 Page

    Holographic Superfluids and Superconductors in Dilaton-Gravity

    Full text link
    We investigate holographic models of superfluids and superconductors in which the gravitational theory includes a dilatonic field. Dilaton extensions are interesting as they allow us to obtain a better description of low temperature condensed matter systems. We focus on asymptotically AdS black hole configurations, which are dual to field theories with conformal ultraviolet behavior. A nonvanishing value of the dilaton breaks scale invariance in the infrared and is therefore compatible with the normal phase being insulating (or a solid in the fluid mechanical interpretation); indeed we find that this is the case at low temperatures and if one appropriately chooses the parameters of the model. Not only the superfluid phase transitions, but also the response to external gauge fields is analyzed. This allows us to study, among other things, the vortex phase and to show that these holographic superconductors are also of Type II. However, at low temperatures they can behave in a qualitatively different way compared to their analogues without the dilaton: the critical magnetic fields and the penetration depth can remain finite in the small T/T_c limit.Comment: 20 pages, 8 figures; few comments and references added, a typo fixed in the equation below eq. (16), article accepted for publication in JHE

    Emergent Gauge Fields in Holographic Superconductors

    Full text link
    Holographic superconductors have been studied so far in the absence of dynamical electromagnetic fields, namely in the limit in which they coincide with holographic superfluids. It is possible, however, to introduce dynamical gauge fields if a Neumann-type boundary condition is imposed on the AdS-boundary. In 3+1 dimensions, the dual theory is a 2+1 dimensional CFT whose spectrum contains a massless gauge field, signaling the emergence of a gauge symmetry. We study the impact of a dynamical gauge field in vortex configurations where it is known to significantly affect the energetics and phase transitions. We calculate the critical magnetic fields H_c1 and H_c2, obtaining that holographic superconductors are of Type II (H_c1 < H_c2). We extend the study to 4+1 dimensions where the gauge field does not appear as an emergent phenomena, but can be introduced, by a proper renormalization, as an external dynamical field. We also compare our predictions with those arising from a Ginzburg-Landau theory and identify the generic properties of Abrikosov vortices in holographic models.Comment: 19 pages, 14 figures, few comments added, version published in JHE

    Aquaporin-4 and brain edema.

    Get PDF
    Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury

    p-wave Holographic Superconductors and five-dimensional gauged Supergravity

    Full text link
    We explore five-dimensional N=4{\cal N}=4 SU(2)×U(1)SU(2)\times U(1) and N=8{\cal N}=8 SO(6) gauged supergravities as frameworks for condensed matter applications. These theories contain charged (dilatonic) black holes and 2-forms which have non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question of interest is whether they also contain black holes with two-form hair with the required asymptotic to give rise to holographic superconductivity. We first consider the N=4{\cal N}=4 case, which contains a complex two-form potential AμνA_{\mu\nu} which has U(1) charge ±1\pm 1. We find that a slight generalization, where the two-form potential has an arbitrary charge qq, leads to a five-dimensional model that exhibits second-order superconducting transitions of p-wave type where the role of order parameter is played by AμνA_{\mu\nu}, provided q≳5.6q \gtrsim 5.6. We identify the operator that condenses in the dual CFT, which is closely related to N=4{\cal N}=4 Super Yang-Mills theory with chemical potentials. Similar phase transitions between R-charged black holes and black holes with 2-form hair are found in a generalized version of the N=8{\cal N}=8 gauged supergravity Lagrangian where the two-forms have charge q≳1.8q\gtrsim 1.8.Comment: 35 pages, 14 figure
    • …
    corecore