35 research outputs found

    Avian neural crest cell migration is diversely regulated by the two major hyaluronan-binding proteoglycans PG-M/versican and aggrecan

    Get PDF
    It has been proposed that hyaluronan-binding proteoglycans play an important role as guiding cues during neural crest (NC) cell migration, but their precise function has not been elucidated. In this study, we examine the distribution, structure and putative role of the two major hyaluronan-binding proteoglycans, PG-M/versicans and aggrecan, during the course of avian NC development. PG-M/versicans V0 and V1 are shown to be the prevalent isoforms at initial and advanced phases of NC cell movement, whereas the V2 and V3 transcripts are first detected following gangliogenesis. During NC cell dispersion, mRNAs for PG-M/versicans V0/V1 are transcribed by tissues lining the NC migratory pathways, as well as by tissues delimiting nonpermissive areas. Immunohistochemistry confirm the deposition of the macromolecules in these regions and highlight regional differences in the density of these proteoglycans. PG-M/versicans assembled within the sclerotome rearrange from an initially uniform distribution to a preferentially caudal localization, both at the mRNA and protein level. This reorganization is a direct consequence of the metameric NC cell migration through the rostral portion of the somites. As suggested by previous in situ hybridizations, aggrecan shows a virtually opposite distribution to PG-M/versicans being confined to the perinotochordal ECM and extending dorsolaterally in a segmentally organized manner eventually to the entire spinal cord at axial levels interspacing the ganglia. PG-M/versicans purified from the NC migratory routes are highly polydispersed, have an apparent M(r) of 1,200-2,000 kDa, are primarily substituted with chondroitin-6-sulfates and, upon chondroitinase ABC digestion, are found to be composed of core proteins with apparent M(r)of 360–530, 000. TEM/rotary shadowing analysis of the isolated PG-M/versicans confirmed that they exhibit the characteristic bi-globular shape, have core proteins with sizes predicted for the V0/V1 isoforms and carry relatively few extended glycosaminoglycan chains. Orthotopical implantation of PG-M/versicans immobilized onto transplantable micromembranes tend to ‘attract’ moving cells toward them, whereas similar implantations of a notochordal type-aggrecan retain both single and cohorts of moving NC cells in close proximity of the implant and thereby perturb their spatiotemporal migratory pattern. NC cells fail to migrate through three-dimensional collagen type I-aggrecan substrata in vitro, but locomote in a haptotactic manner through collagen type I-PG-M/versican V0 substrata via engagement of HNK-1 antigen-bearing cell surface components. The present data suggest that PG-M/versicans and notochordal aggrecan exert divergent guiding functions during NC cell dispersion, which are mediated by both their core proteins and glycosaminoglycan side chains and may involve ‘haptotactic-like’ motility phenomena. Whereas aggrecan defines strictly impenetrable embryonic areas, PG-M/versicans are central components of the NC migratory pathways favoring the directed movement of the cells

    Structure, Chromosomal Localization, and Promoter Analysis of the Human Elastin MicrofibrilInterfase Located proteIN (EMILIN) Gene

    Get PDF
    Abstract Elastinmicrofibril interfase-located protein (EMILIN) is an extracellular matrix glycoprotein abundantly expressed in elastin-rich tissues such as the blood vessels, skin, heart, and lung. It occurs with elastic fibers at the interface between amorphous elastin and microfibrils. In vitroexperiments suggested a role for EMILIN in the process of elastin deposition. This multimodular protein consists of 995 amino acids; the domain organization includes a C1q-like globular domain at the C terminus, a short collagenous stalk, a region containing two leucine zippers, and at least four heptad repeats with a high potential for forming coiled-coil α-helices and, at the N terminus, a cysteine-rich sequence characterized by a partial epidermal growth factor-like motif and homologous to a region of multimerin. Here we report the complete characterization of the human and murine EMILIN gene, their chromosomal assignment, and preliminary functional data of the human promoter. A cDNA probe corresponding to the C terminus of EMILIN was used to isolate two genomic clones from a human BAC library. Sequencing of several derived subclones allowed the characterization of the whole gene that was found to be about 8 kilobases in size and to contain 8 exons and 7 introns. The internal exons range in size from 17 base pairs to 1929 base pairs. All internal intron/exon junctions are defined by canonical splice donor and acceptor sites, and the different domains potentially involved in the formation of a coiled-coil structure are clustered in the largest exon. The 3′-end of the EMILIN gene overlaps with the 5′-end of the promoter region of the ketohexokinase gene, whose chromosomal position is between markers D2S305 and D2S165 on chromosome 2. A 1600-base pair-long sequence upstream of the translation starting point was evaluated for its promoter activity; five deletion constructs were assayed after transfection in primary chicken fibroblasts and in a human rhabdomyosarcoma cell line. This analysis indicates the existence of two contiguous regions able to modulate luciferase expression in both cell types used, one with a strong activatory function, ranging from positions −204 to −503, and the other, ranging from positions −504 to −683, with a strong inhibitory function

    Isolation and Characterization of EMILIN-2, a New Component of the Growing EMILINs Family and a Member of the EMI Domain-containing Superfamily

    Get PDF
    EMILIN (elastin microfibril interfase located Protein) is an elastic fiber-associated glycoprotein consisting of a self-interacting globular C1q domain at the C terminus, a short collagenous stalk, an extended region of potential coiled-coil structure, and an N-terminal cysteine-rich domain (EMI domain). Using the globular C1q domain as a bait in the yeast two-hybrid system, we have isolated a cDNA encoding a novel protein. Determination of the entire primary structure demonstrated that this EMILIN-binding polypeptide is highly homologous to EMILIN. The domain organization is superimposable, one important difference being a proline-rich (41%) segment of 56 residues between the potential coiled-coil region and the collagenous domain absent in EMILIN. The entire gene (localized on chromosome 18p11.3) was isolated from a BAC clone, and it is structurally almost identical to that of EMILIN (8 exons, 7 introns with identical phases at the exon/intron boundaries) but much larger (about 40 versus 8 kilobases) than that of EMILIN. Given these findings we propose to name the novel protein EMILIN-2 and the prototype member of this family EMILIN-1 (formerly EMILIN). The mRNA expression of EMILIN-2 is more restricted compared with that of EMILIN-1; highest levels are present in fetal heart and adult lung, whereas, differently from EMILIN-1, adult aorta, small intestine, and appendix show very low expression, and adult uterus and fetal kidney are negative. Finally, the EMILIN-2 protein is secreted extracellularly by in vitro-grown cells, and in accordance with the partial coexpression in fetal and adult tissues, the two proteins shown extensive but not absolute immunocolocalization in vitro

    Integrin binding site within the gC1q domain orchestrates EMILIN-1-induced lymphangiogenesis.

    Get PDF
    Lymphatic vessels (LVs) play a pivotal role in the control of tissue homeostasis and also have emerged as important regulators of immunity, inflammation and tumor metastasis. EMILIN-1 is the first ECM protein identified as a structural modulator of the growth and maintenance of LV; accordingly, Emilin1-/- mice display lymphatic morphological alterations leading to functional defects as mild lymphedema, leakage and compromised lymph drainage. Many EMILIN-1 functions are exerted by the binding of its gC1q domain with the E933 residue of α4 and α9β1 integrins. To investigate the specific regulatory role of this domain on lymphangiogenesis, we generated a transgenic mouse model expressing an E933A-mutated EMILIN-1 (E1-E933A), unable to interact with α4 or α9 integrin. The mutant resulted in abnormal LV architecture with dense, tortuous and irregular networks; moreover, the number of anchoring filaments was reduced and collector valves had aberrant narrowed structures. E933A mutation also affected lymphatic function in lymphangiography assays and made the transgenic mice more prone to lymph node metastases. The finding that the gC1q/integrin interaction is crucial for a correct lymphangiogenesis response was confirmed and reinforced by functional in vitro tubulogenesis assays. In addition, ex vivo thoracic-duct ring assays revealed that E1-E933A-derived lymphatic endothelial cells had a severe reduction in sprouting capacity and were unable to organize into capillary-like structures. All these data provide evidence that the novel "regulatory structural" role of EMILIN-1 in the lymphangiogenic process is played by the integrin binding site within its gC1q domain

    multimerin 2 maintains vascular stability and permeability

    Get PDF
    Abstract Multimerin-2 is an extracellular matrix glycoprotein and member of the elastin microfibril interface-located (EMILIN) family of proteins. Multimerin-2 is deposited along blood vessels and we previously demonstrated that it regulates the VEGFA/VEGFR2 signaling axis and angiogenesis. However, its role in modulating vascular homeostasis remains largely unexplored. Here we identified Multimerin-2 as a key molecule required to maintain vascular stability. RNAi knockdown of Multimerin-2 in endothelial cells led to cell-cell junctional instability and increased permeability. Mechanistically cell-cell junction dismantlement occurred through the phosphorylation of VEGFR2 at Tyr951, activation of Src and phosphorylation of VE-cadherin. To provide an in vivo validation for these in vitro effects, we generated Multimerin-2−/− (Mmrn2−/−) mice. Although Mmrn2−/− mice developed normally and displayed no gross abnormalities, endothelial cells displayed cell junctional defects associated with increased levels of VEGFR2 phospho-Tyr949 (the murine counterpart of human Tyr951), impaired pericyte recruitment and increased vascular leakage. Of note, tumor associated vessels were defective in Mmrn2−/− mice, with increased number of small and often collapsed vessels, concurrent with a significant depletion of pericytic coverage. Consequently, the Mmrn2−/− vessels were less perfused and leakier, leading to increased tumor hypoxia. Chemotherapy efficacy was markedly impaired in Mmrn2−/− mice and this was associated with poor drug delivery to the tumor xenografts. Collectively, our findings demonstrate that Multimerin-2 is required for proper vessel homeostasis and stabilization, and unveil the possibility to utilize expression levels of this glycoprotein in predicting chemotherapy efficacy

    Colorectal cancer development is affected by the ECM molecule EMILIN-2 hinging on macrophage polarization via the TLR-4/MyD88 pathway

    Get PDF
    Background Colorectal cancer is one of the most frequent and deadly tumors. Among the key regulators of CRC growth and progression, the microenvironment has emerged as a crucial player and as a possible route for the development of new therapeutic opportunities. More specifically, the extracellular matrix acts directly on cancer cells and indirectly affecting the behavior of stromal and inflammatory cells, as well as the bioavailability of growth factors. Among the ECM molecules, EMILIN-2 is frequently down-regulated by methylation in CRC and the purpose of this study was to verify the impact of EMILIN-2 loss in CRC development and its possible value as a prognostic biomarker. Methods The AOM/DSS CRC protocol was applied to Emilin-2 null and wild type mice. Tumor development was monitored by endoscopy, the molecular analyses performed by IHC, IF and WB and the immune subpopulations characterized by flow cytometry. Ex vivo cultures of monocyte/macrophages from the murine models were used to verify the molecular pathways. Publicly available datasets were exploited to determine the CRC patients' expression profile; Spearman's correlation analyses and Cox regression were applied to evaluate the association with the inflammatory response; the clinical outcome was predicted by Kaplan-Meier survival curves. Pearson correlation analyses were also applied to a cohort of patients enrolled in our Institute. Results In preclinical settings, loss of EMILIN-2 associated with an increased number of tumor lesions upon AOM/DSS treatment. In addition, in the early stages of the disease, the Emilin-2 knockout mice displayed a myeloid-derived suppressor cells-rich infiltrate. Instead, in the late stages, lack of EMILIN-2 associated with a decreased number of M1 macrophages, resulting in a higher percentage of the tumor-promoting M2 macrophages. Mechanistically, EMILIN-2 triggered the activation of the Toll-like Receptor 4/MyD88/NF-kappa B pathway, instrumental for the polarization of macrophages towards the M1 phenotype. Accordingly, dataset and immunofluorescence analyses indicated that low EMILIN-2 expression levels correlated with an increased M2/M1 ratio and with poor CRC patients' prognosis. Conclusions These novel results indicate that EMILIN-2 is a key regulator of the tumor-associated inflammatory environment and may represent a promising prognostic biomarker for CRC patients

    Distal motor neuropathy associated with novel EMILIN1 mutation

    Get PDF
    Abstract Elastin microfibril interface-located proteins (EMILINs) are extracellular matrix glycoproteins implicated in elastogenesis and cell proliferation. Recently, a missense mutation in the EMILIN1 gene has been associated with autosomal dominant connective tissue disorder and motor-sensory neuropathy in a single family. We identified by whole exome sequencing a novel heterozygous EMILIN1 mutation c.748C>T [p.R250C] located in the coiled coil forming region of the protein, in four affected members of an autosomal dominant family presenting a distal motor neuropathy phenotype. In affected patient a sensory nerve biopsy showed slight and unspecific changes in the number and morphology of myelinated fibers. Immunofluorescence study of a motor nerve within a muscle biopsy documented the presence of EMILIN-1 in nerve structures. Skin section and skin derived fibroblasts displayed a reduced extracellular deposition of EMILIN-1 protein with a disorganized network of poorly ramified fibers in comparison with controls. Downregulation of emilin1a in zebrafish displayed developmental delay, locomotion defects, and abnormal axonal arborization from spinal cord motor neurons. The phenotype was complemented by wild-type zebrafish emilin1a, and partially the human wild-type EMILIN1 cRNA, but not by the cRNA harboring the novel c.748C>T [p.R250C]. These data suggest a role of EMILIN-1 in the pathogenesis of diseases affecting the peripheral nervous system

    Regulation of the Extrinsic Apoptotic Pathway by the Extracellular Matrix Glycoprotein EMILIN2▿ †

    No full text
    Elastin microfibril interface-located proteins (EMILINs) constitute a family of extracellular matrix (ECM) glycoproteins characterized by the presence of an EMI domain at the N terminus and a gC1q domain at the C terminus. EMILIN1, the archetype molecule of the family, is involved in elastogenesis and hypertension etiology, whereas the function of EMILIN2 has not been resolved. Here, we provide evidence that the expression of EMILIN2 triggers the apoptosis of different cell lines. Cell death depends on the activation of the extrinsic apoptotic pathway following EMILIN2 binding to the TRAIL receptors DR4 and, to a lesser extent, DR5. Binding is followed by receptor clustering, colocalization with lipid rafts, death-inducing signaling complex assembly, and caspase activation. The direct activation of death receptors by an ECM molecule that mimics the activity of the known death receptor ligands is novel. The knockdown of EMILIN2 increases transformed cell survival, and overexpression impairs clonogenicity in soft agar and three-dimensional growth in natural matrices due to massive apoptosis. These data demonstrate an unexpected direct and functional interaction of an ECM constituent with death receptors and discloses an additional mechanism by which ECM cues can negatively affect cell survival
    corecore